The Nuclear Renaissance Begins

Construction & Supply Chain Focus

Presented by Rita C. Bowser

Vice President, Major Projects

Europe, Middle East & Africa

Westinghouse Electric Company

Outline

- Overview
- Construction Focus
- Supply Chain Focus

Summary

Westinghouse Electric Company

Founded on Technology...

- Incorporated in 1886 by George Westinghouse
- Responsible for some of the world's important achievements:
 - AC technology
 - 1st commercial radio broadcast (KDKA-1920)
 - USS Nautilus
 - 1st camera on the moon
 - Commercial nuclear power

Today's Nuclear Power Industry

- Supplies nearly 20% of the world's electricity needs
- Streamlined nuclear regulatory process
- Greatly improved plant designs
- Proven track record of safe, efficient operation
- Modular construction, digital controls, scheduling software help to control costs, increase efficiency, and reduce construction time

Strong Public Support Continues

Source: Bisconti Research Inc. September 2006 poll of 1,000 U.S. adults; margin of error is +/- 3%

5

Why Nuclear?

- Meets needs to reduce GHG emissions
- Highest capacity factors
- Low cost per kilowatt hour
- More stable fuel sources, less fluctuation in price
- Public acceptance at all-time high
- Proven high standards in:
 - Safety
 - Availability
 - Financial Performance

New Designs Must Deliver

- Cost basis that can compete with other energy sources
 - High degree of certainty for schedule
 - Reduced construction time and cost
- Increased levels of safety
- Easier to operate and maintain
- Standardised plants

7

Simplification and Standardisation...

- Simplicity and standardisation in **Design** through reduced number of components and bulk commodities
- Simplicity in **Safety** through use of passive safety systems
- Simplicity in **Construction** through modularisation
- Simplicity in **Procurement** through standardisation of components and plant design
- Simplicity in Operation and Maintenance through use of proven systems and components, and man-machine interface advancements

First Build of a New Standard Advanced Passive Gen III Plant

AP1000 Footprint

AP1000 Modular Construction

Constructible \rightarrow reliably short schedule \rightarrow lower capital costs

11

AP1000 China Projects Progress

Modular Build Experience

Fabrication Facilities located at Haiyang capable of producing modules and CVs for 4 AP1000s per year

China Project Key Milestones

- February 28, 2007 Framework Contract Signed
- July 24, 2007 Contracts Signed
 - Nuclear Island
 - Consortium Technology Transfer
 - Fuels
 - Sub-supplier Technology Transfer Contracts
- September 24, 2007 All Contracts Effective
- December 31, 2007 Authorisation to Proceed
- March 31, 2009 Sanmen 1 First Concrete
- September 27, 2009 Haiyang 1 First Concrete
- November 2013 Sanmen 1 Operational
- May 2014 Haiyang 1 Operational

Site 1 Milestones	Unit 1		
Framework Contract	Feb 28, 2007		
Contract Signing	Jul 24, 2007		
Contract Effective Date	Sep 24, 2007		
Authorisation to Proceed	Dec 31, 2007		
Start NI Excavation	Mar 31, 2008		
First Concrete	Mar 31, 2009		
Two Steam Generators Delivered on Site	Aug 31, 2011		
Start Cold Functional Test	Oct 31, 2012		
Start Hot Functional Test	Dec 31, 2012		
Start Fuel Load	May 31, 2013		
End of Performance Test	Nov 30, 2013		

Rule of thumb – Haiyang 1 schedule is +6

14

Schedule Overview – All 4 Units

12 months

16

6 months

wcoungudUSe

First Concrete

Sanmen Unit 1 March 31, 2009

Haiyang Unit 1 Sept 24, 2009

Sanmen Unit 2 December 17, 2009

确保安全操行 上实现中电校核电"三步走"发

Haiyang Unit 2 June 22, 2010

ghouse

Four China AP1000 Units under Construction

Sanmen 1 – RV to set in April 2011

Haiyang Unit 1 – CVBH Set April 2010

Sanmen 2 - CVBH Set June 2010

17

Haiyang Unit 2 – FCD June 20th

Containment Vessel Bottom Head (CVBH)

Sanmen Unit 1 December 21, 2009

Sanmen Unit 2 June 13, 2010

Haiyang Unit 2 CVBH - October 31, 2010

Haiyang Unit 1 April 10, 2010

CA20 Auxiliary Building

Sanmen Unit 1 June 29, 2009

Sanmen Unit 2 June 27, 2010

Haiyang Unit 1 January 30, 2010

Haiyang Unit 2 CA20- September 30, 2010

CA04 (Reactor Cavity)

Haiyang Unit 1 May 2010

and the second s

CA05

CA05, forms the walls around the demineralisers and other components

Sanmen Unit 1 February 28, 2010

Haiyang Unit 1 CA05 – June 28, 2010 Sanmen Unit 2 CA05 – August 4, 2010 Haiyang Unit 2 CA05 – December 29, 2010

CV Ring 1

CA01 (Steam Generator & Refueling Canal Module)

Haiyang Unit 1 CA01– August, 2010 Sanmen Unit 2 CA01– September, 2010 Haiyang Unit 2 CA01 – January 31, 2011

Positive Effects of Modular Construction

	Feb 2007 plan	Actual	Delta
First Concrete Milestone Completed	31-Mar-09	26-Mar-09	0
Auxiliary Building Module Set in Place	31-May-09	29-Jun-09	1
CV Bottom Head Set in Place	31-Jun-09	21-Dec-09	6
CV 1st Ring Set in Place	31-Dec-09	18-Mar-10	3
CV 2nd Ring Set in Place	31-May-10	2-Jun-10	0

With the setting of the CV 2nd Ring, against the construction schedule milestones Sanmen Unit 1 has basically recovered the 6 month delay in setting the CVBH. This would not have been achievable if it were not for modular construction.

Application of Lessons Learned

- First of a Kind (FOAK) Activities for Sanmen 1 and AP1000 equipment design & manufacturing have led to a number of Lessons Learned, resulting in:
- NI Basemat at Haiyang 1 and Sanmen 2 laid in less time than Sanmen 1
- Ultra-large SG & RV forging lead times were reduced for the 3rd and 4th units
- Squib Valve designs have been optimised
- CA20 (Auxiliary Building) module fabrication for Haiyang 1took far less time than for Sanmen 1
- CV Bottom Head fabrication for Haiyang 1 took far less time than for Sanmen 1
- CV Bottom Head welding at Haiyang is within a fully-enclose building

25

Westinghouse is using modern and proven ways of capturing lessons learned and applies a process that ensures their implementation.

AP1000 Units Under Contract

Modular build Experience

Fabrication Facilities located at Haiyang capable of producing modules and CVs for 4 AP1000s per year

Supply Chain – China Project

Summary of Major Orders Placed:

- Steam Generators
- Reactor Vessels
- Reactor Vessel Internals
- Reactor Coolant Pumps (RCP)
- RCP Variable Frequency Drives
- Control Rod Drive Mechanisms
- Polar Crane
- Containment Vessel
- Integrated Head Package
- Passive Residual Heat Removal Heat Exchanger
- Reflective Metal Insulation
- Valves

SM #1 RV Upper Shell

Huge Opportunity – Huge Challenge Potential £30 Billion value to UK economy

UK Timeline for Suppliers?

Springfields Supplier Day – June 2010

- Around 40 exhibiting companies
- Over 300 visitors to the exhibition

Nuclear Power Delivery UK Supplier Event – Manchester, June 2010

- Around 300 attendees
- Around 170 companies
- Keynote presentations from OND and Horizon Nuclear Power

Still There Are Challenges To Overcome

- World financial conditions
- Short term energy options
- Deliver new plants on budget and on schedule
- Regulatory process
- Lack of certainty of CO₂ treatment
- Waste and security issues
- Maintain operating fleet performance
- Human resources
- Supply chain

Summary

- First AP1000 build is providing valuable experience.
- Significant benefit being gained from parallel modular build and construction.
- Lessons learned are being applied to next AP1000 construction.

Questions?

