Canada's Nuclear Regulator

2011 WNU SUMMER INSTITUTE AUGUST 10 - CHRIST CHURH, OXFORD, UK

FUKUSHIMA DAIICHI NPP EVENT AND ASSOCIATED RADIOACTIVE SOURCE TERM - CNSC'S INITIAL RESPONSE

Prepared by: CNSC Staff Presented by: Dr. Ali El-Jaby Canadian Nuclear Safety Commission

•

Canadian Nuclear Commission canadienne Safety Commission de sûreté nucléaire

OUTLINE

- PART I
 - About the CNSC
 - CNSC initial response
- PART II
 - Reactor and fuel description ("BWR 101")
 - Simplified accident sequence
 - Source-term modelling & results
 - Current plant status
- PART III
 - Regulatory path forward

Canada's Nuclear Regulator

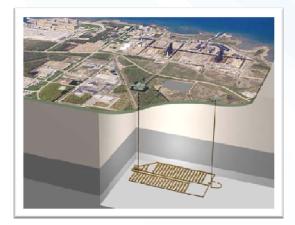
PART I - CNSC MANDATE AND INITIAL RESPONSE

Canadian Nuclear Commission canadienne Safety Commission de sûreté nucléaire

CANADIAN NUCLEAR SAFETY COMMISSION - "CNSC"

- Established May 2000, under the *Nuclear Safety and Control Act*
- Replaced the *Atomic Energy Control Board* of the 1946 Atomic *Energy Control Act*
- Independent Nuclear Regulator for over 65 years

CNSC MISSION



Protect the health, safety and security of persons and the environment; and implement Canada's international commitments on the peaceful use of nuclear energy

CNSC REGULATES ALL NUCLEAR ACTIVITIES AND FACILITIES IN CANADA

- Uranium mines and mills
- Uranium fuel fabricators and processing
- Nuclear power plants
- Waste management facilities
- Nuclear substance processing
- Industrial and medical applications
- Nuclear research and education
- Export/import control

...FROM CRADLE TO GRAVE

CNSC FUKUSHIMA RESPONSE

- Emergency Operations Centre (EOC) activated March 11 AM
- Nuclear Emergency Organisation (NEO) staffed in accordance with CNSC Emergency Response Plan (ERP) adapted to foreign emergency
- 24/7 operation
 - Executive
 - Technical
 - Liaison
 - Communications
 - Logistics

CNSC EOC COMMAND

CNSC FUKUSHIMA RESPONSE

- CNSC role
 - Evaluate situation and possible outcomes
 - Provide credible information and advice
 - CONTINUE TO REGULATE
- Actions
 - Support the Government of Canada
 - Worked closely with other departments (Health, Environment, Foreign Affairs, Public Safety)
 - Established working links with international counterparts (USNRC, UKONR, ASN-France)
 - Sent expert to IAEA (Dr. V. Khotylev)

CNSC REGULATORY RESPONSE

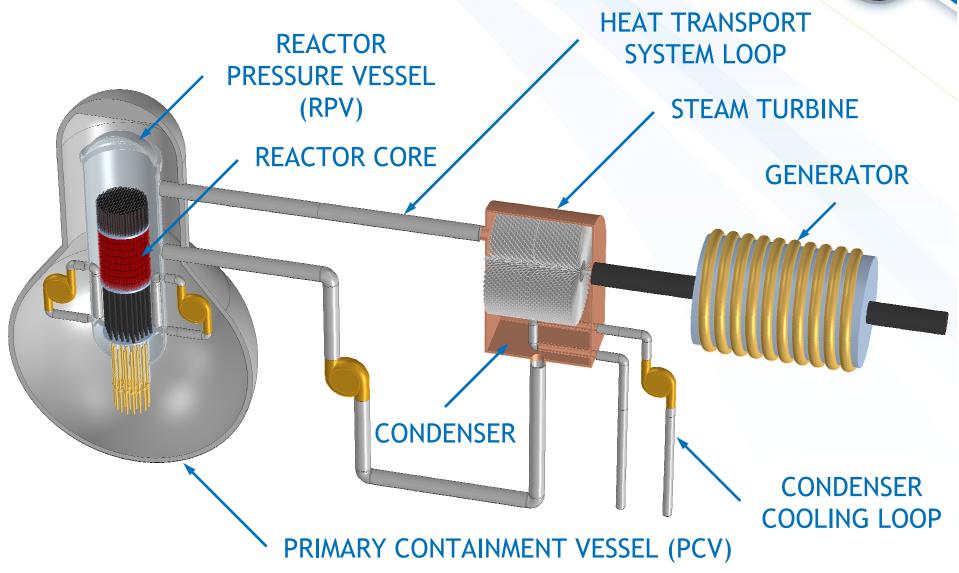
- Issued order on March 17 under 12(2) of the NSCA - to all nuclear facilities:
 - Review initial lessons learned
 - Re-examine safety cases
 - Implement immediate actions and report on long-term measures
- Issued order on March 22 under 12(2) of the NSCA to all other facilities

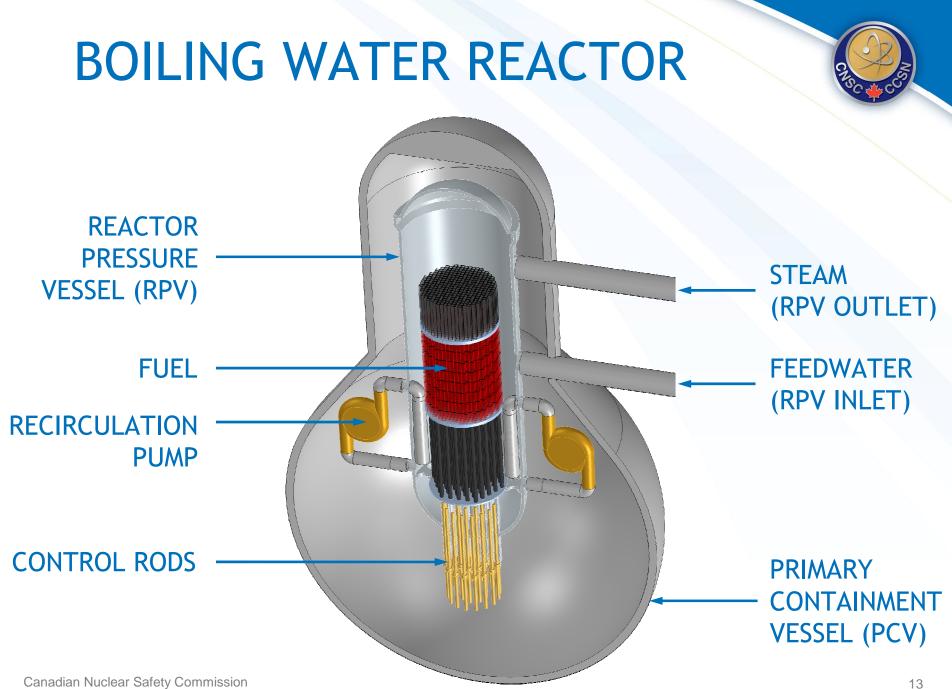
CONFIRMING CONTINUED SAFETY OF OUR FACILITIES

CNSC REGULATORY RESPONSE

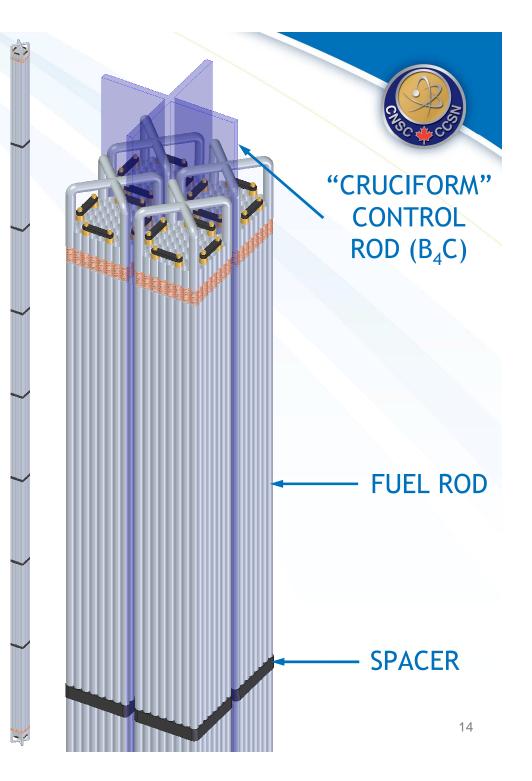
- CNSC staff carried out focused NPP and facility inspections
 - Seismic qualification
 - Fire
 - Flooding
 - Backup power
 - Hydrogen igniters and passive recombiners
- On-going inspections against external hazards

Canada's Nuclear Regulator


PART II - TECHNICAL ASPECTS OF CNSC RESPONSE TO THE FUKUSHIMA DAIICHI NPP EVENT



lear Commission canadienne ssion de sûreté nucléaire


BOILING WATER REACTOR

BWR FUEL

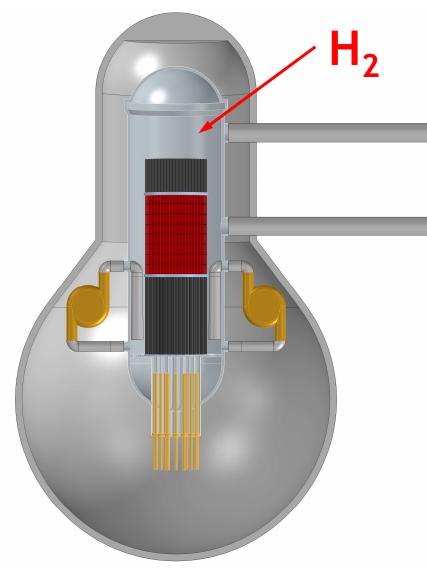
- Fuel rods deployed in 8 × 8 assemblies
- 400-700 per core
- 13.9 cm × 13.9 cm
- 4.47 m total length (3.76 m active fuel)
- 320 kg total mass
- 208 kg UO₂ fuel
- 103 kg Zircaloy (cladding)

FUEL (AND CORE) SAFETY

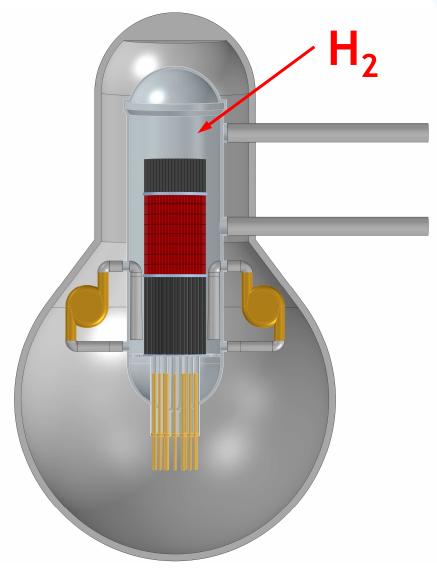
- Ensure safety → core must be in "3C" state:
 - COOLED
 - CONTROLLED
 - CONTAINED
- 3C is necessary for all modes of reactor operation
- Protect against fuel damage and potential releases of fission products to the environment

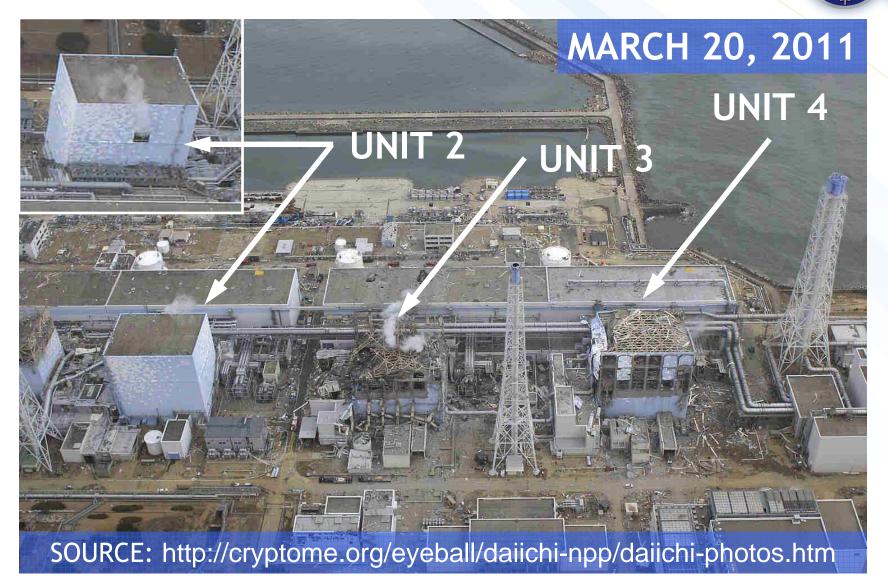
FUEL (AND CORE) BEHAVIOUR UNDER ACCIDENT CONDITIONS

- 1/2 core exposure
 - Cladding temperature rise but no significant core damage
- 2/3 core exposure
 - Cladding temperature ~900°C
 - Ballooning and cracking of cladding
 - Fission products released from fuel-toclad gap
- 3/4 core exposure \rightarrow core damage sequence accelerated


FUEL (AND CORE) BEHAVIOUR AFTER 3/4 CORE EXPOSURE

Cladding Temperature	Fuel Behaviour
> ~1200°C	Zirconium cladding reacts in steam atmosphere \rightarrow highly exothermic reaction which further heats up core $(Zr + 2H_2O(g) \rightarrow ZrO_2 + 2H_2)$
> ~1800°C	Zirconium cladding begins to melt
> ~2400°C	Fuel assembly structure begins to "candle" into "non-coolable" geometry \rightarrow i.e., core falls apart


Canadian Nuclear Safety Commission


- During normal operation reactor provides power to cooling pumps (via steam turbine)
- Earthquake \rightarrow auto shutdown (as designed and intended)
 - Core decay heat 7% of reactor power
 - Core cooling provided via back-up power (diesel generators) to pumps and heat exchangers to remove decay heat
 - Pools are also continually cooled to ensure integrity of spent fuel
- 14 m tsunami following earthquake damaged back-up power supply → NO COOLING TO REACTOR CORES OR SPENT FUEL POOLS

- No core cooling \rightarrow fuel temperature increases
- $H_2O(\ell) \rightarrow H_2O(g)$
- Cladding reaction in $H_2O(g)$: Zr + 2H₂O(g) \rightarrow ZrO₂ + 2H₂
 - Exothermic: 5.8 × 10⁶ J·kg⁻¹
 - Rapid temperature increase
 - Onset of cladding damage and fission product release
- Cladding reaction in air (O₂):
 - $\text{Zr} + \text{O}_2 \rightarrow \text{ZrO}_2 + \text{H}_2$
 - Exothermic: $1.2 \times 10^7 \, \text{J} \cdot \text{kg}^{-1}$
 - Significant cladding damage and further fission product release

- Hydrogen build up in the reactor pressure vessel
- Eventually hydrogen finds its way into the reactor building (via bypass/dry well/wet well)
- Potential for hydrogen explosion when H₂ and O₂ > 5% of atmosphere

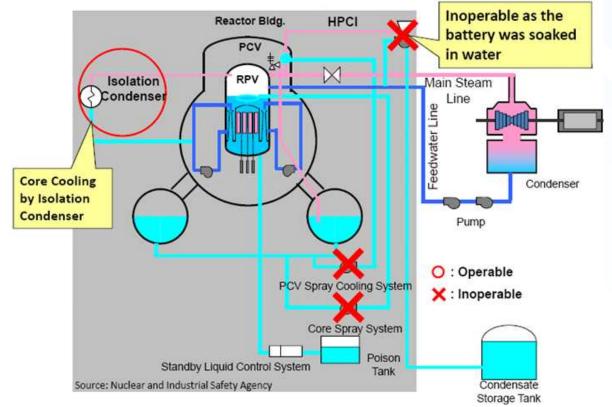
SOURCE TERM DEVELOPMENT

- CNSC tasked to provide advice to Health Canada on the consequences to the population
- CNSC tasked to develop an estimate of the amount of radioactive material that might be released \rightarrow **SOURCE TERM**
- Source term combined with weather models to predict atmospheric dispersion of radioactive material \rightarrow develop dose models to population
- Protective measures (shelter, KI pills, EZ) instituted based on predicted dose models

SOURCE TERM DEVELOPMENT

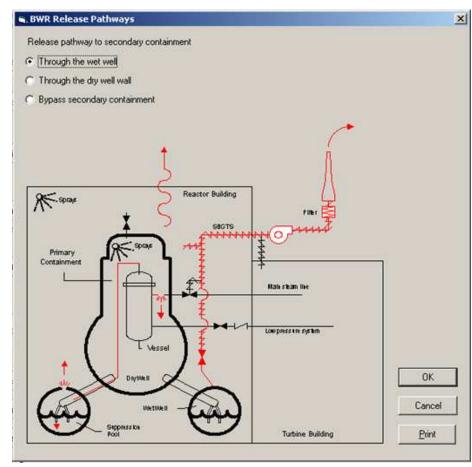
- Primary objectives were to **PROTECT**:
 - Canadians in Japan (incl. Embassy Staff)
 - Canadians in Canada
 - The Canadian environment
- Advice based on projected releases from the entire Fukushima Daiichi NPP site
- Projected releases based on a postulated CREDIBLE WORSE CASE (CWC) scenario

SOURCE TERM DEVELOPMENT

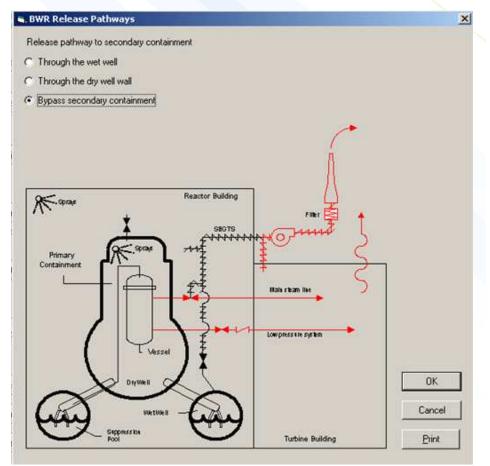

- Information and data from various points of contact
 - Government of Canada (HC-RPB, EC-CMC)
 - International counterparts and agencies (USNRC, UKONR, ASN-France)
 - Canadian Embassy in Tokyo
 - Canadian Mission in Vienna (IAEA)
 - Japanese Government (NISA, MEXT)
 - TEPCO

SOURCE TERM DEVELOPMENT: SOFTWARE

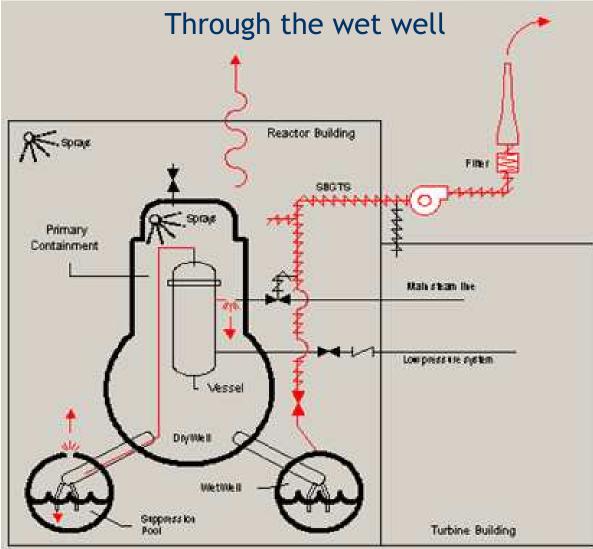
- RASCAL 4.1 Radiological Assessment
 System for Consequence AnaLysis
- ORIGEN-S (Oak Ridge Isotope GENeration)
 - Isotopic depletion and decay module in the SCALE (Standardised Computer Analyses for Licensing Evaluation) code system


SOURCE TERM DEVELOPMENT: PLANT CONDITIONS

- Exact plant conditions were not known
- Ideally \rightarrow the following information would have been available:



SOURCE TERM DEVELOPMENT: RELEASE PATHWAYS


Through the wet well

Bypass secondary containment

SOURCE TERM DEVELOPMENT: RELEASE PATHWAYS

SOURCE TERM DEVELOPMENT: CREDIBLE WORSE CASE SCENARIO

- Most conservative and credible projected plant condition based on available information as of 2011-03-12
- Units 1-3 incurred partial core meltdown
- Unit 4 spent fuel pool assumed to be uncovered indefinitely
- Iterative process
 - Several scenarios were assembled, compared against available data, verified (spot-check calculations), revised, etc.

SOURCE TERM DEVELOPMENT: CREDIBLE WORSE CASE SCENARIO

- Release pathway \rightarrow bypass of primary containment (through wet well)
- Release based on reactor core time uncovered
 - Rector shutdown \rightarrow 2011-03-11 at 05:46
 - Core uncovered \rightarrow 2011-03-12 at 09:00
 - Core recovered \rightarrow 2011-03-12 at 21:00
- Release events
 - 2011-03-12 \rightarrow leak rate of 100 gal/min
 - 2011-03-13 \rightarrow filters off

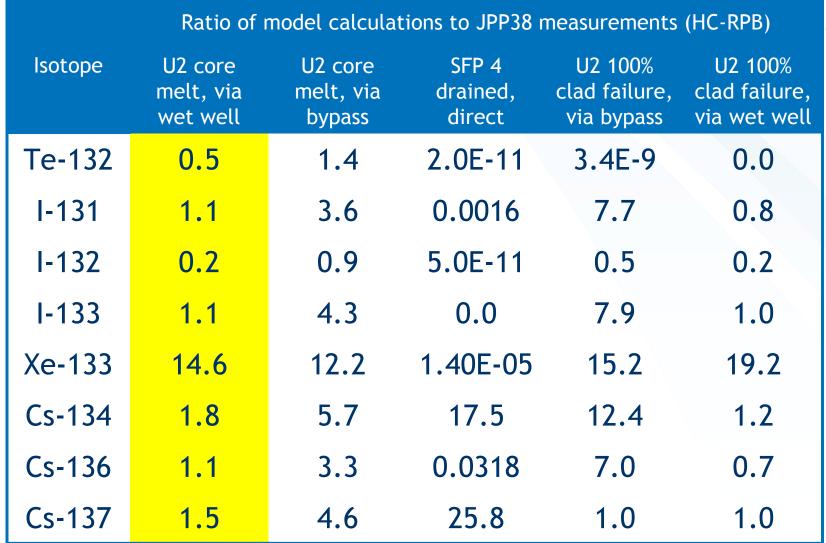
SOURCE TERM DEVELOPMENT: CWC SCENARIO SOURCE TERM

- Unit 1 is ~ half the size of Units 2 and 3
- Units 2 and 3 identical
- Unit 4 spent fuel pool contained a little over two cores
- Release of 65 isotopes calculated

lsotope	Unit 1 [Bq]	Unit (2+3) [Bq]	SFP 4 [Bq]	Total [Bq]
Cs-137	2.80E+16	2×5.50E+16	2.10E+17	3.48E+17
I-131	2.70E+17	2×5.30E+17	6.70E+13	1.33E+18

SOURCE TERM DEVELOPMENT: CWC SCENARIO DOSE

- 80 km from site circa March 12-15 (24 h)
- CWC (weather) \rightarrow **DIRECT TO TOKYO**
- Release from the Unit 4 spent fuel pool contributes 11 mSv TEDE (small contribution to thyroid dose or via inhalation)
- Reactor cores primary contributor to thyroid dose (500 mSv)


Unit 1	Unit 2	Unit 3	SFP 4	Total
100 mSv	200 mSv	200 mSv	11 mSv	511 mSv

SOURCE TERM CALCULATION: IS IT BOUNDING?

- HC-RPB shared data from CTBTO monitoring station JPP38 at Takasaki (200 km away) → allowed us to zero-in on CWC
- CTBTO Comprehensive Test Ban Treaty Organisation (ctbto.org)
- JPP38 measurements confirmed that the SEVERITY of the radiological release was captured by our CWC

SOURCE TERM CALCULATION: IS IT BOUNDING?

Canadian Nuclear Safety Commission

SOURCE TERM CALCULATION: SUPPLEMENTAL VERIFICATION

- NISA released dose rate measurements from within containment
- RASCAL can use containment radiation monitor readings to estimate core condition

Unit and date	Wet well monitor	RASCAL core melt estimate
Unit 1 (March 24, 17:00)	26 Sv/h	28 %
Unit 2 (March 12, 13:00)	180 Sv/h	100%

SOURCE TERM SUMMARY

- Severity of accident captured in terms of radiological releases
- Conservative (simple) dose rate estimates based on CWC source term sufficient to trigger initial 80 km EZ (Health Canada guidelines)
- CWC source term provided to EC-CMC for detailed atmospheric modelling
 - Assess impact on Canadian West Coast
 - Plume arrived ~ March 19 (as predicted)

SOURCE TERM SUMMARY

- The postulated source term was the most CWC scenario
- CWC was bounding with respect to observed releases shortly after event
- Initial 80 km EZ in agreement with international partners (USNRC, UKONR)
- EZ status continuously being reevaluated by the Government of Canada (CNSC/HC/EC/DFAIT/PS)

CURRENT PLANT STATUS

- Core-cooling and circulation system
 - Additional system being installed in parallel to existing one
 - Should allow faster clean up of basement water
 - Higher rate of water injection likely to reduce core temperatures
- Reactor building covers
 - Unit 1 targeted for September completion
 - Units 2-4 currently on-hold
- Nitrogen injection installed on all Units
- Spent fuel pool closed-loop cooling
 - Established for Units 2-4
 - Unit 1 by end of the week

Canada's Nuclear Regulator

PART III - CNSC REGULATORY PATH FORWARD

Canadian Nuclear Commission canadienne Safety Commission de sûreté nucléaire

ESTABLISHMENT OF CNSC JAPAN TASK-FORCE - MANDATE

- Review submissions from licensees who have been directed under the NSCA 12(2) orders - ALL LICENSEES HAVE RESPONDED
- Assess technical and operational information from the events at the Fukushima Daiichi NPP and identify high-level lessons learned
- Develop recommendations for short-term and longterm measures to recommend whether design or operational modifications (including supporting research) are needed
- Determine priorities for implementation of corrective actions
- Develop recommendations (as appropriate) for potential changes to CNSC regulatory requirements, inspection programmes, and policies

ESTABLISHMENT OF CNSC JAPAN TASK-FORCE - FOCUS

- External hazards which could impact Canadian NPPs (initiating events)
- Plant response up to severe core damage (assuming failed accident mitigation)
- Severe accident mitigation and management
- On-site and off-site emergency response
- Regulatory requirements review

REVIEW OF THE SAFETY CASES

- Focus on verify capabilities to mitigate
 - Beyond design basis events including station blackout
 - Internal and external flooding
 - Other events concurrent with a seismic event
- Verification of defence-in-depth strategies and measures to:
 - Minimise frequency of abnormal operations and failures
 - Limiting the progression of an accident to within design basis
 - Control severe plant conditions
 - Mitigate radiological consequences
- Emergency management procedures of the NPP

Canada

Canadian Nuclear Commission canadienne Safety Commission de sûreté nucléaire

•