

Enrichment Market Overview

Pat Upson

World Nuclear University Summer Institute Christ Church, Oxford 16 July 2012

Agenda

- I. Introduction to Nuclear Fuel
- II. Enrichment 101
- **III. Enrichment Technologies**
- **IV. Enrichment Supply**
- V. Centrifuge Development
- **VI.** Comparison of Designs

I. Nuclear's Competitive Advantage

I. Nuclear Fuel Cycle Overview

I. Enrichment Is a Key Element of the Fuel Cycle

¹Based on TradeTech, LLC 2010 average term market prices for SWU and conversion and average uranium price of \$47/lb U3O8. Assumes 4.0% product assay, 0.30 w/o tails and 0.5% conversion losses

² USEC estimate

³ Includes supply from China, Japan, and Brazil

⁴ WNA Reference case 2010 worldwide demand (assumes 0.25% tails assay for Western-origin reactors and 0.15% tails assay for Russian-origin reactors)

II. Terminology

Enrichment

- Concentrating the amount of U²³⁵ in uranium to typically 3% to 5% (product)
- Feed: typically natural uranium ~0.7% U²³⁵ and 99.3% U²³⁸
- Tails: what remains after the enriched product is removed, expressed as the percentage of U²³⁵ in the material

Uranium Form

- For current technologies, enrichment plants require the uranium to be in the form of uranium hexafluoride (UF_6)
 - Solid at room temperature and a gas above ~80°C

II. What is a SWU?

Separative Work Unit (SWU)

 A measure of the separation achieved in an uranium enrichment plant after uranium of a given U²³⁵ content is separated into two components, one having a higher percentage of U²³⁵ (product) and one having a lower percentage of U²³⁵ (tails)

II. Enrichment Plant Material Flow @ 0.25 tails

II. Enrichment Plant Material Flow @ 0.30 tails

II. Enrichment Plant Material Flow @ 0.20 tails

II. Economic Considerations

Product assay based on reactor operational needs

Transactional tails assay based upon relative costs of feed and SWU and contract limits (actual tails assay at enrichment plant often differs)

II. Enrichment demand: today - 2030

III. Enrichment Technologies

Based upon the small differences in weight between U²³⁵ and U²³⁸

- Gaseous Diffusion
- Gas Centrifuge

Based upon differences in atomic or molecular properties

- Atomic Vapor Laser Isotope Separation (AVLIS)
- Molecular Laser Isotope Separation (MLIS)
- Separation of Isotopes by Laser Excitation (SILEX)
- Aerodynamic Separation Process

III. Transition to Centrifuge

Industry estimates indicate a 3 million SWU plant will cost approximately \$3 billion

• Sufficient to fuel about 30 reactors' reload requirements per year

M2M: Megatons to Megawatts program

III. Gaseous Diffusion

III. Gas Centrifuge

III. AVLIS

III. MLIS

Separating Isotopes With Lasers

New molecule ²³⁵UF₅ precipitates as a solid

Supersonic expansion prepares UF₆ for separation Infrared lasers energize ²³⁵UF₆ molecule

> Energy from ultraviolet laser removes fluorine atom

Source: NAC International

III. SILEX

III. Aerodynamic Separation Process

Stationary walled centrifuge uses the		Processes have relatively high			
principle as a rotat centrifuge	ing	(1.025 to an el	1.030) over lement		
Extremely high energy requirements		Fewer stages required due to re-feeding of material			
Hig (~3	High capital, high power (~3.000 kWb/SWU)				

١.

IV. Enrichment Plants – New & Existing

20

IV. Principal Suppliers

Supplier		Market Share ¹	Enrichment Technology	
USEC		25%	 Currently using gaseous diffusion Deploying centrifuge 	
URENCO 🗦		27%	• ETC ² centrifuge	
Rosatom / TENEX		23%	Centrifuge	
AREVA		22%	 Currently using gaseous diffusion Deploying ETC centrifuge 	
Other	*	~ 3%	 China ("black-box" Russian centrifuge) Japan (JNFL centrifuge) Brazil (INB centrifuge) 	

¹ USEC 2010 estimate

² Enrichment Technology Company (ETC) is a joint venture company owned in equal shares by URENCO and AREVA

IV. Secondary Supplies

The Megatons to Megawatts[™] Program is a unique, commercially financed government-industry partnership¹ in which bomb-grade uranium from dismantled Russian nuclear warheads is recycled into LEU used to produce fuel for American nuclear power plants

20-year, \$8 billion program at no cost to taxpayers

412 metric tons of bomb-grade HEU have been recycled into 11,905 metric tons of LEU, equivalent to 16,494 nuclear warheads eliminated²

The LEU received from Russia each year under this agreement is deemed to contain ~5.5 MMSWU

¹ USEC, as executive agent for the U.S. government, and TENEX, acting for the Russian government

² As of December 31, 2010

IV. Paducah, Kentucky

IV. USEC: Gaseous Diffusion Enrichment Stage

IV. USEC: American Centrifuge

IV. Depleted Uranium

Large quantities of depleted UF₆ has accumulated at the gaseous diffusion plants in the U.S.

Location	Total Cylinders	Total Depleted UF ₆ (metric tons)
Paducah, Kentucky	36,191	436,400
Portsmouth, Ohio	16,109	195,800
Oak Ridge, Tennessee	4,822	54,300
U.S. Total	57,122	686,500

Source: Argonne National Laboratory (U.S. Department of Energy, Office of Environmental Management)

□ The AREVA George Besse gaseous diffusion plant:

A bank of centrifuges at a URENCO plant

The URENCO Eunice plant

V. ETC Centrifuge Development

Source: UxC 4Q 2009 Enrichment Market Outlook; USEC

A URENCO centrifuge

ORNL gas cascade centrifuge

V.U.S. Centrifuge Development

VI. Comparison of Technologies

TECHNOLOGY	Power	C ΑΡΑCITY	AVAILABILITY/FLEXIBILITY
Gaseous Diffusion	 Power intensive ~2500 kWh/SWU 	Economies of scale	Ability to increase power and output
Centrifuge	Energy efficient50-60 kWh/SWU	Modular expansion	Favorable lead times in comparison to new reactor builds
SILEX	 Low power consumption 	Modular expansion	Technology can be applied for silicon & other elements
AVLIS	 Low energy inputs 	Modular technology	High separative capacity

Sources: Silex; USEC; WNA

VI. Comparison of Centrifuge Designs

Russian <10 SWU/year

European (TC-12) ~40-45 SWU/year

American ~350 SWU/year

Source: USEC

Questions

