Global Energy Perspectives: the Role of Nuclear Energy

Nebojsa Nakicenovic
Deputy Director General
International Institute for Applied Systems Analysis
Professor Emeritus of Energy Economics
Vienna University of Technology

49th Japan Atomic Industrial Forum, Tokyo – 12 April 2016
International Institute for Applied Systems Analysis (IIASA)

- International, independent, interdisciplinary science
- Research & big-data on major global problems
- Solution & policy oriented, integrated systems analysis

Nakicenovic

www.IIASA.ac.at

2016 #2
Global CO2 Emissions

- IPCC Category I
- RCP 2.6
- GEA (SE4ALL)

Global CO2 emissions (GtCO2)

- Peak by 2020
- reductions of 35-75% by 2050
- almost zero or negative in the long term

Source: GEA, 2012; IPCC, 2014
Global CO2 Emissions

Source: Rogelj et. al, 2015
The Key Energy Challenges

Energy Access

Climate Change

Energy Security

Air Pollution
Health Impacts

Nakicenovic
Multiple Benefits of Integrated Policies

Total Global Policy Costs (2010-2030)

- Only Energy Security
- Only Air Pollution and Health
- Only Climate Change
- All Three Objectives

Source: McCollum et. al, 2012; IPCC, 2014
The World in 2050 (TWI2050)

- How to achieve global development within a safe and just operating space
- “Safe space” of interaction among SDGs: sustainability narratives and integrated models
- Sustainable Development Pathway based on existing literature e.g. SSP1, GEA, DDPP
- Multiple-benefits and tradeoffs of transformation toward the “safe space” and how to achieve sustainable futures
Sustainability Transformation

“Doing More with Less” within Planetary Boundaries

→ Growing number of actors of change:
 • green businesses
 • cities
 • civil society
 • science
 • IGOs (UN etc.)

→ Increasing problem perception

→ Values and norms

→ Policy regimes

Vision: Sustainable Future

Nakicenovic

Source: WBGU, 2011

2016 #11
Asia-Pacific Primary Energy
A Transformational Pathway (I)

Energy savings (efficiency, conservation, and behavior)
~40% improvement by 2030
~30% renewables by 2030

Savings
Other renewables
Nuclear
Gas
Oil
Coal
Biomass

Nakicenovic
www.GlobalEnergyAssessment.org
Somewhat larger nuclear role than worldwide
Asia-Pacific Primary Energy
A Transformational Pathway (III)

Even larger nuclear role

Even larger nuclear role

Savings
Other renewables
Nuclear
Gas
Oil
Coal
Biomass

Renewables
Nuclear
Gas
Oil
Coal
Biomass

www.GlobalEnergyAssessment.org
Global Water Withdrawals
A Pathway with Full Portfolio

Source: Fricko et al, 2014
Nuclear in GEA pathway

- IPCC range
- IPCC median
- GEA-Supply
- GEA-Mix
- GEA-Efficiency
- NEA/IEA high (2008)
- IEA/NEA Blue (2010)
- IEA/NEA Blue H (2010)
- NEA/IEA low (2008)
- IAEA (2010)

GWe

1990 2000 2010 2020 2030 2040 2050
Four stages of nuclear development

<table>
<thead>
<tr>
<th>Stage</th>
<th>Period</th>
<th>Construction starts</th>
<th>Grid connections</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Reactors per year</td>
<td>MW per year</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reactors per year</td>
<td>MW per year</td>
</tr>
<tr>
<td>1</td>
<td>Early growth</td>
<td>1954-1965</td>
<td>7.4</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Rogner, 2016
Four stages of nuclear development

<table>
<thead>
<tr>
<th>Stage</th>
<th>Period</th>
<th>Construction starts</th>
<th>Grid connections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early growth</td>
<td>1954-1965</td>
<td>Reactors per year</td>
<td>MW per year</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.4</td>
<td>1,332</td>
</tr>
<tr>
<td>Accelerated growth</td>
<td>1966-1985</td>
<td>Reactors per year</td>
<td>MW per year</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24.9</td>
<td>20,812</td>
</tr>
</tbody>
</table>

Source: Rogner, 2016
Four stages of nuclear development

<table>
<thead>
<tr>
<th>Stage</th>
<th>Period</th>
<th>Construction starts</th>
<th>Grid connections</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Reactors per year</td>
<td>MW per year</td>
<td>Reactors per year</td>
</tr>
<tr>
<td>1 Early growth</td>
<td>1954-1965</td>
<td>7.4</td>
<td>1,332</td>
</tr>
<tr>
<td>2 Accelerated growth</td>
<td>1966-1985</td>
<td>24.9</td>
<td>20,812</td>
</tr>
<tr>
<td>3 Slow growth</td>
<td>1986-2004</td>
<td>4.7</td>
<td>3,946</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Rogner, 2016
Four stages of nuclear development

<table>
<thead>
<tr>
<th>Stage</th>
<th>Period</th>
<th>Construction starts</th>
<th>Grid connections</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Reactors per year</td>
<td>MW per year</td>
</tr>
<tr>
<td>Early growth</td>
<td>1954-1965</td>
<td>7.4</td>
<td>1,332</td>
</tr>
<tr>
<td>Accelerated growth</td>
<td>1966-1985</td>
<td>24.9</td>
<td>20,812</td>
</tr>
<tr>
<td>Slow growth</td>
<td>1986-2004</td>
<td>4.7</td>
<td>3,946</td>
</tr>
<tr>
<td>Rising expectations</td>
<td>2005-2010</td>
<td>8.8</td>
<td>8,722</td>
</tr>
</tbody>
</table>

Source: Rogner, 2016
Four stages of nuclear development

<table>
<thead>
<tr>
<th>Stage</th>
<th>Period</th>
<th>Construction starts</th>
<th>Grid connections</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Reactors per year</td>
<td>MW per year</td>
</tr>
<tr>
<td>1 Early growth</td>
<td>1954-1965</td>
<td>7.4</td>
<td>1,332</td>
</tr>
<tr>
<td>2 Accelerated growth</td>
<td>1966-1985</td>
<td>24.9</td>
<td>20,812</td>
</tr>
<tr>
<td>3 Slow growth</td>
<td>1986-2004</td>
<td>4.7</td>
<td>3,946</td>
</tr>
<tr>
<td>4 Rising expectations</td>
<td>2005-2010</td>
<td>8.8</td>
<td>8,722</td>
</tr>
<tr>
<td>5 Post Fukushima</td>
<td>2011-</td>
<td>6.2</td>
<td>6,014</td>
</tr>
</tbody>
</table>

Source: Rogner, 2016
Nuclear power before Fukushima

- Dramatic improvement in operating performance between 1990 and 2005
- Higher capacity factors
- Power up-rates
- Licence extensions
- Market in “used” reactors
- “Money printing” machines
- Previous “hopes/fears” that NPPs would be victims of electricity liberalization have not materialized!
- Market liberalization proved difficult for new NPPs
Global electricity and the nuclear share share

Source: Rogner, 2016
Global nuclear power generating capacity (as 31 December 2015)

Source: Adapted from IAEA-PRIS
Regional nuclear generating capacities

- **North America**
- **Western Europe**
- **Eastern Europe & CIS**
- **Asia**

As per 31 December 2015
Source: Adapted from IAEA - PRIS

Source: Rogner, 2016, adopted from IEA-PRIS

Nakicenovic
2016 #27
Load factor: Global fleet of nuclear reactors

1990 – 2000: Performance improvements correspond to a virtual construction of 34 NPPs of 1,000 MW each

Without 40 GW laid off in Japan

Source: Rogner, 2016
Construction starts 1950 to 2015

As per 31 December 2015
Source: Adapted from IAEA - PRIS

No. of construction starts

Total installed capacity, GW

Source: Rogner, 2016

Nakicenovic
Age structure of nuclear power plants

Note: Age of reactor is determined by its first grid connection. Reactors connected in current year are assigned with the age 0 years.

Source: Rogner, 2016
Status global nuclear power

Units in Operation: 442
384.2 GWe

Units under construction: 66
65.0 GWe

Source: Rogner, 2016
Naval Reactors

- U.S. ~130 reactors used as primary propulsion and electric power generation in submarines, aircraft carriers, a cruiser and a destroyer.

- Has safely accumulated over 5400 reactor-years of operation

- Uses more enriched fuel than commercial reactors

- Russia ~100; France ~20; UK ~20; and China ~ 6 reactors used as primary propulsion.

- Source of trained personnel in reactor operation.
IAEA – Low global nuclear scenarios

Capacity in 2030: 385 GW versus 546 GW in 2010 projection

Nuclear generation share in 2030: 8.6% versus 13.8% in 2010 projection

GW(e)

Year of projection:
- 2005
- 2006
- 2007
- 2008
- 2009
- 2010
- 2011
- 2012
- 2013
- 2014
- 2015

Source: Rogner, 2016

Nakicenovic
Nakicenovic

Source: Rogner, 2016

IAEA – High global nuclear scenarios

Capacity in 2030: 632 GW versus 803 GW in 2010 projection

Nuclear generation share in 2030: 11.3% versus 16.6% in 2010 projection

Year of projection:
- 2005
- 2006
- 2007
- 2008
- 2009
- 2010
- 2011
- 2012
- 2013
- 2014
- 2015

Source: Rogner, 2016
Drivers of the renaissance in interest

- Continued growth in global energy demand
- Energy security
- Fossil fuel price volatility
- Need for low-cost base load electricity
- Environment protection and climate change
- Nuclear power: Improved operations, good economics and safety record starting in the early 1990s

In spite of economic crisis:
- Prospects better than ever since the mid 1990s

Source: Rogner, 2016
R&D is needed for innovative solutions

- Safety, economics, storage, non-proliferation
- Advance modular, standard-design plants
- Easy and cheap 235U reserves limited
- Once-through fuel cycle wastes 95% of energy
- Closed fuel cycle renders nuclear energy practically unlimited (for 10,000 years) with a considerable reduction of high-level radioactive wastes
- Radically new designs including nuclear fusion
Fabrication of nuclear fuel

URANIUM

DEPLETED

STORAGE

ENRICHMENT

CONVERSION

CONCENTRATION

EXTRACTION OF URANIUM

UO₂

ENRICHED

MOX

DEPLETED

NEW FUEL

MOX

SPENT FUEL UO₂

PLUTONIUM

REPROCESSED

REPROCESSING PLANT

FINAL STORAGE

FINAL WASTES

NATURAL URANIUM

REACTOR

NEW FUEL UO₂
ITER Design is Final

May 2001

Size: 3 times JET,
Plasma current: 15 MA
Plasma volume 837 m³
Plasma surface 678 m²
B = 5.3 T @ 6.2m
500 MW, 500 s, Q > 10
R = 6.2 m
Final scientific demonstration
French Nuclear Reactors

- 58 reactors with 63 GWnet (66 GWgross)
- ~50 GW within 10 years (1980-1990)
- High degree of standardization:
 - 925 MW PWR Westinghouse license
 - 1350 MW PWR upscaled with maximized French equipment
 - 1550 MW PWR N4, precursor to 1650 EPR (lack of standardization)

Source: Grubler, 2009
French Nuclear Plants: Total Costs
1970-2000 = 1.5 10^{12} FF(1998) = ~$250 billion

Source: Grubler, 2009
Anatomy of a Scale-up “Success”

- 80% nuclear electricity
- Load management and modulation
- No major accidents
- Little public opposition
- Stable regulatory environment (technocratic “grandes ecoles” elite)
- Continued development (scale-up) of technology
- Full-scale industry developed (incl. fuel cycle)

Source: Grubler, 2009
Construction Time
(construction start to grid connection)

Data Source: IAEA PRIS, 2009
Beyond French Power Plants

- Similar pattern in the U.S. (albeit moderated)
- “Negative” learning: Cost escalation due to regulatory environment rather than intrinsic to technology
- Diseconomies of scale with increasing number and fewer plants being built
- Advantages of “granularity” (small unit-scale) and standard design

Source: Grubler, 2009
Nuclear Power Plants US & France: “Negative” Learning by Doing

Source: Grubler, 2009
Drastic cost escalation even for most successful OECD nuclear scale-up program

Reasons for cost escalation:
- Scaling-up in reactor size (negative economies)
- Domestic production (low knowledge spillovers)
- Departure from standardized design (N4/pre-EPR: CEA decides not EDF)
- Scale-back of expansion program (vs. exuberant forecasts and lengthened construction time)

Lessons for the future – lack of cost certainty
- Challenge for learning-by-doing paradigm
- Need for granularity (standard, modular design)

Source: Adapted from Grubler, 2009
Supply Technologies Cost Trends

Source: Grubler et al, 2012
Investment Portfolios
World

No Sustainability Policies
(2558 bill.)

Today (941 bill.)

2005-2010

2050

Source: Riahi et al, 2012
Investment Portfolios
World

No Sustainability Policies
(2558 bill.)

GEA-Efficiency
(2849 bill.)

Source: Riahi et al, 2012
Investment Portfolios
Asia-Pacific

No Sustainability Policies
(516 bill.)

Today
(275 bill.)

2005-2010

2050

GEA-Efficiency
(579 bill.)

Source: Riahi et al, 2012
Investment Portfolios Asia-Pacific

No Sustainability Policies
(516 bill.)

Today
(275 bill.)

2005-2010

2050

GEA-Efficiency
(579 bill.)

Source: Riahi et al, 2012

Nakicenovic
Statement: Energy services are central for further development and a transformation toward sustainable future. It is important to increase RD&D and investments and establish stable regulatory mechanisms to achieve these development goals.
THANK YOU

naki@iiasa.ac.at