

Global Energy Perspectives: the Role of Nuclear Energy

Nebojsa Nakicenovic

Deputy Director General International Institute for Applied Systems Analysis Professor Emeritus of Energy Economics Vienna University of Technology

49th Japan Atomic Industrial Forum, Tokyo – 12 April 2016

International Institute for Applied Systems Analysis (IIASA)

Research & big-data on major global problems

()

Nakicenovic

 Solution & policy oriented, integrated systems analysis

www.IIASA.ac.at

Global mean temperature increase

Nakicenovic

Source: CIMIP5 and NASA, 2016 2016 #3

Global CO₂ Emissions

Global CO2 Emissions

Nakicenovic

ST.

Source: GEA, 2012; IPCC, 2014

Global CO2 Emissions

Source: Rogelj et. al, 2015

S

Nakicenovic

The Key Energy Challenges

Energy Access

Climate Change

Energy Security

Air Pollution Health Impacts 2016 #7

Multiple Benefits of Integrated Policies

Nakicenovic Source: McCollum et. al, 2012; IPCC, 2014 2016 #8

The World in 2050 (TWI2050)

- How to achieve global development within a safe and just operating space
- Safe space of interaction among SDGs: sustainability narratives and integrated models
- Sustainable Development Pathway based on existing literature e.g. SSP1, GEA, DDPP
- Multiple-benefits and tradeoffs of transformation toward the "safe space" and how to achieve sustainable futures

Sustainability Transformation

"Doing More with Less" within Planetary Boundaries

→ Growing number of actors of change:

- · green businesses
- · cities
- · civil society
- science
- · IGOs (UN etc.)

Legitimacy of BAU eroding \rightarrow Values and norms

 \rightarrow Policy regimes

 \rightarrow Increasing problem perception

Time

Source: WBGU, 2011

Global Primary Energy Historical Evolution

2016 #12

Global

Energy

Asia-Pacific Primary Energy A Transformational Pathway (I)

Global

Energy

Global Water Withdrawals A Pathway with Full Portfolio

Nuclear in GEA pathway

Nakicenovic

ST A

2016 #18

Globa

			Construction starts		Grid connections	
	Stage	Period	Reactors per year	MW per year	Reactors per year	MW per year
1	Early growth	1954-1965	7.4	1,332	4.2	432
2						
3						
4						
5						

Source: Rogner, 2016

			Construction starts		Grid connections	
	Stage	Period	Reactors per year	MW per year	Reactors per year	MW per year
1	Early growth	1954-1965	7.4	1,332	4.2	432
2	Accelerated growth	1966-1985	24.9	20,812	17.6	12,540
3						
4						
5						

Nakicenovic

Source: Rogner, 2016

			Construction starts		Grid connections	
	Stage	Period	Reactors per year	MW per year	Reactors per year	MW per year
1	Early growth	1954-1965	7.4	1,332	4.2	432
2	Accelerated growth	1966-1985	24.9	20,812	17.6	12,540
3	Slow growth	1986-2004	4.7	3,946	9.0	8,416
4						
5						

Nakicenovic

Source: Rogner, 2016

				Construction starts		Grid connections	
		Stage	Period	Reactors per year	MW per year	Reactors per year	MW per year
	1	Early growth	1954-1965	7.4	1,332	4.2	432
	2	Accelerated growth	1966-1985	24.9	20,812	17.6	12,540
	3	Slow growth	1986-2004	4.7	3,946	9.0	8,416
1	4	Rising expectations	2005-2010	8.8	8,722	2.7	1,996
	5						

Nakicenovic

ST A

Source: Rogner, 2016

				Construction starts		Grid connections	
		Stage	Period	Reactors per year	MW per year	Reactors per year	MW per year
	1	Early growth	1954-1965	7.4	1,332	4.2	432
	2	Accelerated growth	1966-1985	24.9	20,812	17.6	12,540
	3	Slow growth	1986-2004	4.7	3,946	9.0	8,416
2	4	Rising expectations	2005-2010	8.8	8,722	2.7	1,996
	5	Post Fukushima	2011-	6.2	6,014	5.7	5,279

Nakicenovic

ST A

Source: Rogner, 2016

Nuclear power before Fukushima

- Dramatic improvement in operating performance between 1990 and 2005
- Higher capacity factors
- Power up-rates
- Licence extensions
- Market in "used" reactors
- "Money printing" machines

- Previous "hopes/fears" that NPPs would be victims of electricity liberalization have not materialized!
- Market liberalization proved difficult for new NPPs

Nakicenovic

Source: Rogner, 2016

Global electricity and the nuclear share

Nakicenovic

S

Source: Rogner, 2016

Global nuclear power generating capacity (as 31 December 2015) As per 31 December 2015 Source: Adapted from IAEA - PRIS

Regional nuclear generating capacities

As per 31 December 2015 Source: Adapted from IAEA - PRIS

Load factor: Global fleet of nuclear reactors

1990 – 2000: Performance improvements correspond to a virtual construction of 34 NPPs of 1,000 MW each

Construction starts 1950 to 2015

As per 31 December 2015 Source: Adapted from IAEA - PRIS

Nakicenovic

Source: Rogner, 2016

Age structure of nuclear power plants

Source: Rogner, 2016

Status global nuclear power

As per 29 March 2016 Source: Adapted from IAEA - PRIS

Units in Operation: 442 384.2 GWe

Units under construction: 66 65.0 GWe

Naval Reactors

- U.S. ~130 reactors used as primary propulsion and electric power generation in submarines, aircraft carriers, a cruiser and a destroyer.
- Has safely accumulated over 5400 reactoryears of operation
- Uses more enriched fuel than commercial reactors
- Russia ~100; France ~20; UK ~20; and China ~ 6 reactors used as primary propulsion.
- Source of trained personnel in reactor operation. **Nakicenovic**

IAEA – Low global nuclear scenarios

IAEA – High global nuclear scenarios

Drivers of the renaissance in interest

- Continued growth in global energy demand
- Energy security
- Fossil fuel price volatility
- Need for low-cost base load electricity
- Environment protection and climate change
- Nuclear power:

Improved operations, good economics and safety record starting in the early 1990s

In spite of economic crisis:

Prospects better than ever since the mid 1990s

Source: Rogner, 2016

R&D is needed for innovative solutions

- Safety, economics, storage, non-proliferation
- Advance modular, standard-design plants
- Easy and cheap ²³⁵U reserves limited
- Once-through fuel cycle wastes 95% of energy
- Closed fuel cycle renders nuclear energy practically unlimited (for 10 000 years) with a considerable reduction of high-level radioactive wastes
- Radically new designs including nuclear fusion

Fabrication of nuclear fuel

Nakicenovic

ITER Design is Final

May 2001

Size: 3 times JET, Plasma current: 15 MA Plasma volume 837 m³ Plasma surface 678 m² B = 5.3 T @ 6.2m 500 MW, 500 s, Q > 10 R = 6.2 m**Final scientific** demonstration

French Nuclear Reactors

- 58 reactors with 63 GWnet (66 GWgross)
- ~50 GW within 10 years (1980-1990)
- High degree of standardization:
 - 925 MW PWR Westinghouse license
 - 1350 MW PWR upscaled with maximized French equipment
 - 1550 MW PWR N4, precursor to 1650 EPR (lack of standardization)

Nakicenovic

Source: Grubler, 2009

French Nuclear Plants: Total Costs 1970-2000 = 1.5 1012 FF(1998) = ~\$250 billion

Nakicenovic

S

Source: Grubler, 2009

Anatomy of a Scale-up "Success"

- 80% nuclear electricity
- Load management and modulation
- No major accidents
- Little public opposition
- Stable regulatory environment (technocratic "grandes ecoles" elite)
- Continued development (scale-up) of technology
- Full-scale industry developed (incl. fuel cycle)

Nakicenovic

Source: Grubler, 2009

Construction Time (construction start to grid connection)

Nakicenovic

Data Source: IAEA PRIS, 20016 #43

Beyond French Power Plants

- Similar pattern in the U.S. (albeit moderated)
- "Negative" learning: Cost escalation due to regulatory environment rather than intrinsic to technology
- Diseconomies of scale with increasing number and fewer plants being built
- Advantages of "granularity" (small unitscale) and standard design

R Nakicenovic

Source: Grubler, 2009

Nuclear Power Plants US & France:

"Negative" Learning by Doing

S.

FF98/kW

Summary

- Drastic cost escalation even for most successful OECD nuclear scale-up program
- Reasons for cost escallation:
 Scaling-up in reactor size (negative economies)
 Domestic production (low knowledge spillovers)
 Departure from standardized design (N4/pre-EPR: CEA decides not EDF)
 scale-back of expansion program (vs. exuberant forecasts and lengthened construction time)
- Lessons for the future lack of cost certainty
 Challenge for learning-by-doing paradigm
 Need for granularity (standard, modular design)

Nakicenovic Source: Adapted from Grubler, 2009 2016 #46

Supply Technologies Cost Trends

Investment Portfolios World

Investment Portfolios World

Investment Portfolios Asia-Pacific

Investment Portfolios Asia-Pacific

Statement: Energy services are central for further development and a transformation toward sustainable future. It is important to increase **RD&D** and investments and establish stable regulatory mechanisms to achieve these development goals.

THANK YOU

naki@iiasa.ac.at

IIASA, International Institute for Applied Systems Analysis

H

H

H