Development of Nuclear Energy in India & Future program

50th Annual Conference, JAIF

Global Energy Statistical Yearbook 2016

Electricity production

YEAR 2	2000
Unit: TWh Hig	ghest ten 🔻
United States	4,053
China	1,356
Japan	1,059
Russia	878
Canada	606
Germany	577
India	570
France 7	540
United Kingdom	377
Brazil	349
South Korea	290
Italy	277

ile. Twit	ingliest tell +
United State	3,865
China	1,482
Japan	1,040
Russia	891
Canada	59 <mark>0</mark>
India	588
Germany	586
France	550
United Kinge	dom 385
Brazil	329
South Korea	311
Italy	279

YEAR 2001

YEAR 2002

Unit: TWh	Highest ten 👻	Japan	1,051	Canada	632
United Stat	tes 4,051	Canada	633	Brazil	586
China	1,655	Germany	613	France	569
Japan	1,058	France	561	South Korea	546
Russia	891	Brazil	532	United Kingdom	338
India	5 611	South Korea	523	Saudi Arabia	336
Canada	601	United Kingdom	367		
Germany	587	Italy	303		
France	559				
United King	gdom 387				india
Brazil	346			nin .	
Brazil South Kore	346 a 332			uction in	
Brazil South Kore Italy	346 a 332 285		prod	Juction in	
Brazil South Kore Italy	346 a 332 285	Ner	Prod	Juction in	
Brazil South Kore Italy	346 ea 332 285	e power	Prod	Juction in	11.
Brazil South Kore Italy	346 a 332 285	of Power	Prod	Juction in	1.
Brazil South Kore Italy	346 a 332 285	of Power	Prod	Juction in	
Brazil South Kore Italy	346 a 332 285	of Power	Prod	Juction in	

YEAR 2011

Unit: TWh	Highest ten 🔻
China	4,716
United State	es 4,350
India	3 1,075
Russia	1,055
Japan	1,051
Canada	633
Germany	613
France	561
Brazil	532
South Korea	a 523
United King	dom 367
Italy	303

YEAR 2015

Unit: TWh	Highest ten 🔻
China	5,682
United States	4,324
India	1,368
Russia	1,062
Japan	995
Germany	638
Canada	632
Brazil	586
France	569
South Korea	546
United Kingd	om 338
Saudi Arabia	336

Energy Resources
All resources have to be optimally deployed.
Nuclear: Modest uranium and abundant thorium resources

The Nuclear Power Program aims at achieving energy independence in the long run beyond 2050 by following a closed fuel cycle strategy

India's Energy Resource Base

	Amount	Electricity Potential [¤] GWe-yr
Coal	53.3 -BT	10,660
Hydrocarbon	12 –BT	5,833
Uranium-Metal	61,000 -T	
- In PHWR		328
- In Fast Breeders		42,231
Thorium-Metal (In Breeders)	2 ,25,000 – T	155,502
Hydro	150 -GWe	69 GWe-yr / yr
Non-conv. Ren.	100 -GWe	33 GWe-yr / yr

Assuming entire resource is used for generating electricity.

Currently known resources (including coal bed methane) are 3 BT.

Installed Capacity (March 2017)

Fuel	MWe
Total Thermal	215,840
Coal	190,000
Gas	25,000
Oil	840
Hydro	44,000
Nuclear	6,780
Renewable	50,000
Total	316,620
Excluding Captive Gener	ation 47 300 MWe

Three Stage Nuclear Power Programme

Stage – I Thermal Reactors

- 22– Operating
- 8- Under construction
- Several others planned

Stage - II Fast Breeder Reactors

- 40 MWth FBTR -Operating since 1985 Technology Objectives realised
- 500 MWe PFBR-Under Construction

Stage - III Thorium Based Reactors • 30 kWth KAMINI-Operating

• 300 MWe AHWR-Ready to be launched

Execution of Nuclear Power Program

Only two Central Public Sector Companies can set up Nuclear Power Plants, as per the present Atomic Energy Act

 Thermal Reactors (First Stage) : NPCIL
 Fast Breeder Reactors (Second Stage) : BHAVINI

Areas of Expertise in NPCIL

(Ô

Launch of Program

Technology Demonstration Tarapur Units 1&2 1969 2x200 Mwe BWRs M/s GEC USA on Turnkey basis

Technology Absorption Rajasthan 1&2 1971, 2x220 Mwe PHWR AECL Canada

Operating Reactors

18 PHWRs = 4460 MW

RAPS-1	PHWR	100 MWe
RAPS-2	PHWR	200 MWe
MAPS-1	PHWR	220 MWe
MAPS-2	PHWR	220 MWe
NAPS-1	PHWR	220 MWe
NAPS-2	PHWR	220 MWe
KAPS-1	PHWR	220 MWe
KAPS-2	PHWR	220 MWe
KAIGA-2	PHWR	220 MWe
RAPS-3	PHWR	220 MWe
KAIGA-1	PHWR	220 MWe
RAPS-4	PHWR	220 MWe
TAPS-4	PHWR	540 MWe
TAPS-3	PHWR	540 MWe
KAIGA-3	PHWR	220 MWe
RAPS-5	PHWR	220 MWe
RAPS-6	PHWR	220 MWe
KAIGA-4	PHWR	220 MWe
		6

Kalpakkam, Tamil Nadu Site (KTS)

Rawatbhata Rajasthan Site (RRS)

Tarapur, Maharashtra Site

Kudankulam, Tamil Nadu Site (KTNS)

NPCIL Head Quarters, Mumbai, Maharashtra (NHQMM

Kaiga, Karnataka Site (KKS)

Narora Uttar Pradesh Site

Kakrapar, Gujrat Site (KGS)

Journey SO- FAR

TAPS-1&2

1970s & 1980s TECHNOLOGY DEMONSTRATION & INDIGENISATION of 220 MW

RAPS-1&2

Journey SO- FAR

1990 & 2000 **STANDARDISATION & CONSOLIDATION OF 220 MW**

RAPP-3&4

KAIGA-3&4

NAPS-1&2

KAPS-1&2

RAPP-5&6

Journey SO- FAR Scaling up & Serial Production

1000MW LWR KKNPP-1&2

540 MWe TAPS-3&4

700MWe KAPP-3&4, RAPPP-

Additionalities for rapid growth

Reactors under Commissioning, Construction & launched

KKNPP 3&4 : 2x1000 MW LWR

Reactors under planning

Indian PHWRs

2x700 MW, Chutaka,MP 4x700 MW, Mahi-Banswara, Raj 2x700 MW, Kaiga,Karnataka 2x700 MW, GHAVP, Haryana

Fast Breeder Reactors 2x500 MW by Bhavini

Light Water Reactors OF 1000 MW and above Under IGA

2 Units Kudankulam-5&6, Tamil Nadu 6 Units Jaitapur, Maharashtra 6 Units Kovvada, Andra Pradesh 6 Units Chhaya-Mithi Virdi,Gujarat. 6 Units Haripur, West Bengal

Established Indian industry

Indian industries have successfully developed comprehensive capabilities to meet the critical requirements of various nuclear components.

Evolution of Construction methodology

Open top construction Mega Packages Parallel Construction and Commissioning

The Indian Nuclear Industry Today

Major Equipment Manufacturers Pumps, Valves and Motors **Turbine Generators** Transformers & Switchgear Instrumentation & Control Systems Heat Exchangers

The Indian Nuclear Industry Today Engineering consultants Civil C & I **Conventional Systems** Mega Package and EPC contractors. Reactor component manufacturers Reactor vessel **Reactivity Mechanisms** Fuelling Machines Steam Generators

Operating Performance

Continuous Run (more than a year) recorded by NPCIL's Reactors (21 times)

Launch of Second Stage

500 MWe Fast Breeder Reactor under Commission

Criticality 2017

DIATE HEAT EXCHANGES

India Japan Civil Nuclear Cooperation Nov 2016

Potential of India Japan cooperation

- Japan is a major source for major nuclear and conventional component forgings
- AP 1000, EPR source their larger forgings from Japan
- Toshiba being owner of Westinghouse AP 1000 implementation will become easier
- Indian industry will benefit from technical cooperation

Nuclear Power is Clean & Green

THANKS