

インド原子力発電公社 (NPCIL)CMD S K シャルマ

Global Energy Statistical Yearbook 2016

電力生産

2000年

2001年

nit: TWh	Highest ten
United State	3,865
China	1,482
Japan	1,040
Russia	891
Canada	590
India	588
Germany	586
France	550
United Kingo	dom 385
Brazil	329
South Korea	311
Italy	279

2002年

Unit: TWh	Highest ten ▼
United State	es 4,051
China	1,655
Japan	1,058
Russia	891
India	5位 611
Canada	601
Germany	587
France	559
United King	dom 387
Brazil	346
South Korea	332
Italy	285

2015年

2011年

Init: TWh	Highest ten
China	4,716
United State	s 4,350
India 3	1,075
Russia	1,055
Japan	1,051
Canada	633
Germany	613
France	561
Brazil	532
South Korea	523
United Kingd	lom 367
Italy	303

Init: TWh	Highest ten ▼
China	5,682
United State	5 4,324
India 3	1,368
Russia	1,062
Japan	995
Germany	638
Canada	632
Brazil	586
France	569
South Korea	546
United Kingd	lom 338
Saudi Arabia	336

電力生産が増加の一途をたどるインド

エネルギー資源

- ■全資源の最適な活用が必要
- ■原子力:わずかなウランと豊かな トリウム資源

原子力発電計画の目標: 「閉じた燃料サイクル戦略」により 2050年以降にエネルギー自給を 実現する

インドのエネルギー資源基盤

	量	発電ポテンシャル¤ 単位:GWe・年
石炭	53.3 -BT	10,660
炭化水素	12 -BT	5,833
ウラン-金属	61,000 -T	
- 加圧重水炉		328
- 高速増殖炉		42,231
トリウム - 金属(高速増殖炉)	2,25,000 -T	155,502
水力	150 -GWe	69 GWe · 年/年
非従来型再生可能 エネルギー	100 -GWe	33 GWe · 年/年

資源を全て電力生産に使用したと想定

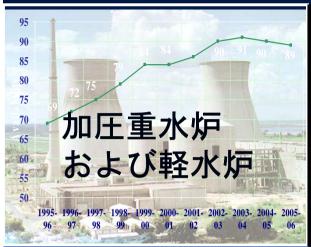
現時点で確認されている資源(炭層メタンを含む)は3BT

設備容量 (2017年3月)

燃料	単位(Mwe)
火力全体	215,840
石炭	190,000
ガス	25,000
石油	840
水力	44,000
原子力	6,780
再生可能	50,000
合計	316,620

自家発電 (47 ,300 Mwe)を除く


原子力委員会(AEC)



供給機関

研究機関

三段階の原子力発電計画

第Ⅰ段階

熱中性子炉

• 22基: 運転中

• 8基:建設中

• その他数基:計画中

第Ⅱ段階

高速増殖炉

- 40 MWth の高速増殖 実験炉(FBTR):1985年より運転 技術目標を達成
- 500 MWe の高速増殖 原型炉(PFBR):建設中

第Ⅲ段階

トリウム炉

- 30 kWth の KAMINI炉: 運転中
- 300 MWe の改良型 重水炉(AHWR):間もなく建設開始

原子力発電計画の実施

現行の原子力法で原子力発電所の建設が 許可されているのは以下の中央公共部門 2社のみ

- 熱中性子炉(第一段階): インド原子力発電公社(NPCIL)
- 高速増殖炉(第二段階):バラティア・ナビキヤ・ビジュット・ニガム 社(BHAVINI)

THE JOURNEY OF NPCIL 2017年 6780

Over 25 years of safe nuclear power generation

MW

PPED 1967年

NPB

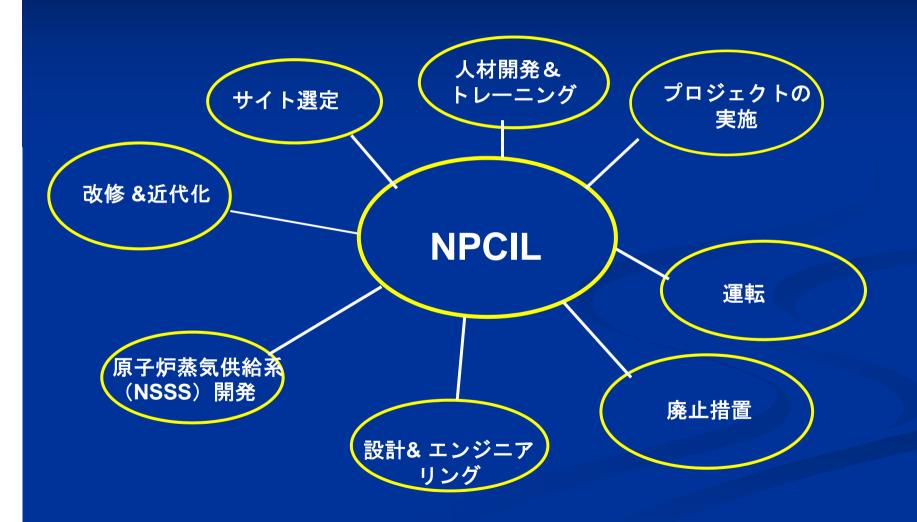
原子力省 原子力局 原子力発電部

1984年

1987年

APA 1970年

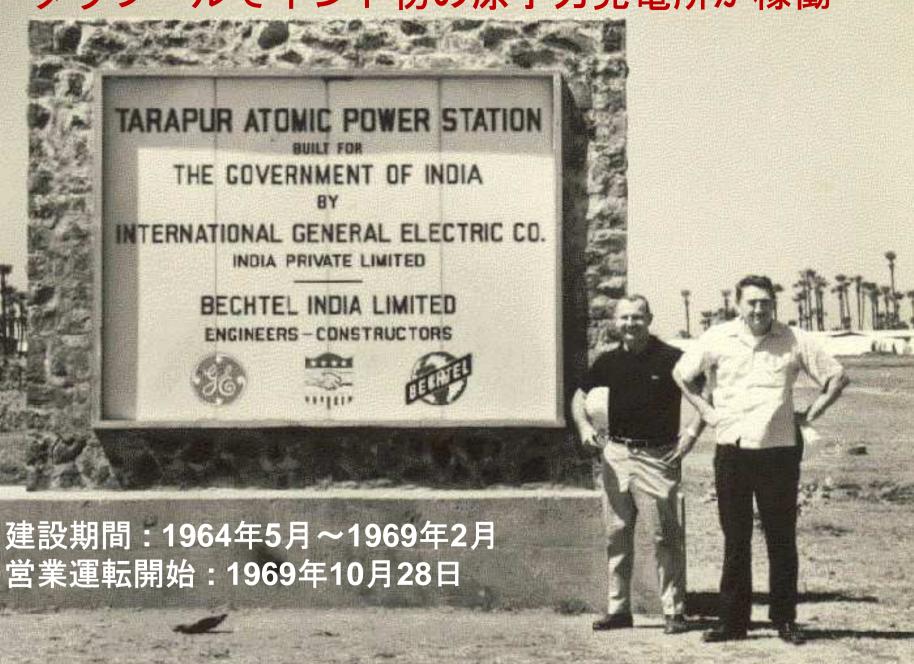
TAPS (タラプール) 1969年

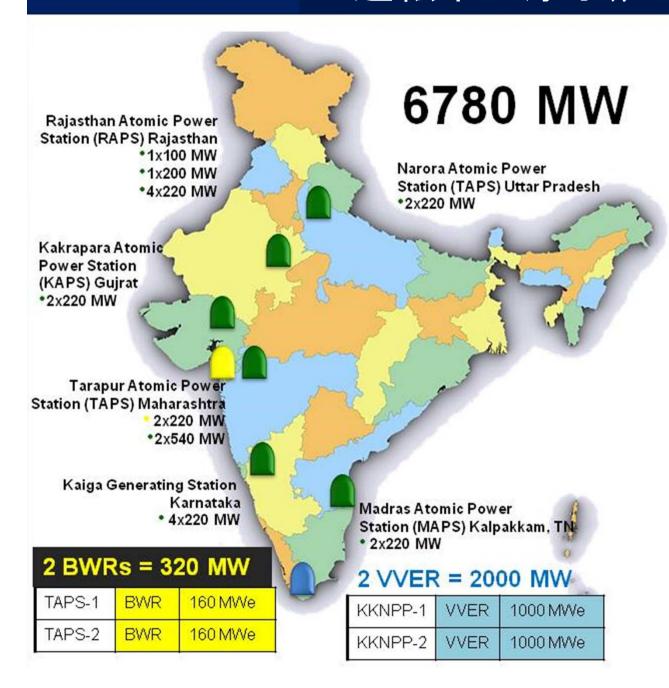

RAPS (ラジャ スタン) 1973年 1981年

MAPS (マドラス) 060 1984年 1986年 **MW**

NPCILの専門領域

計画の開始


技術的実証 タラプール 1・2号機 1969年 BWR (200Mwe) 2基 米 GECとのターンキー契約


技術の取り入れ ラジャスタン 1・2号機 1971年PHWR (220Mwe) 2基 カナダ原子力公社(AECL)

運転中の原子炉

18 PHWRs = 4460 MW

RAPS-1	PHWR	100 MWe
RAPS-2	PHWR	200 MWe
MAPS-1	PHWR	220 MWe
MAPS-2	PHWR	220 MWe
NAPS-1	PHWR	220 MWe
NAPS-2	PHWR	220 MWe
KAPS-1	PHWR	220 MWe
KAPS-2	PHWR	220 MWe
KAIGA-2	PHWR	220 MWe
RAPS-3	PHWR	220 MWe
KAIGA-1	PHWR	220 MWe
RAPS-4	PHWR	220 MWe
TAPS-4	PHWR	540 MWe
TAPS-3	PHWR	540 MWe
KAIGA-3	PHWR	220 MWe
RAPS-5	PHWR	220 MWe
RAPS-6	PHWR	220 MWe
KAIGA-4	PHWR	220 MWe

b

カルパッカム、タミル・ ナドゥ州サイト(KTS)

ラワトバタ、ラジャスタン州 サイト (RRS)

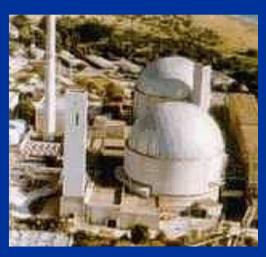
タラプール、マハラシュ トラ州サイト (TMS)

NPCIL 本社、ムンバイ、 マハラシュトラ州 (NHQMM)

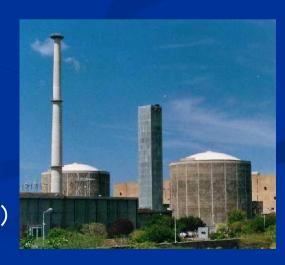
ナローラ、ウッタル・ プラデシュ州サイト (NUPS)

クダンクラム、タミル・ ナドゥ州サイト (KTNS)

カイガ、カルナタカ州サ イト (KKS)


カクラパール、 グジャラート州サイト (KGS)

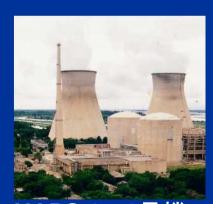
今日までの歩み

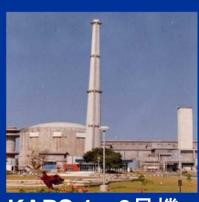

タラプール(TAPS)1・2号機

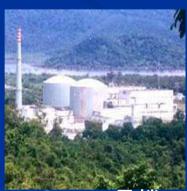
1970年代 ~1980年代 220 MW級原子炉の技術的実証と国産化

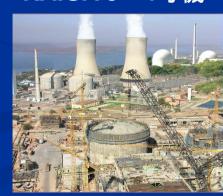
ラジャスタン(RAPS) 1・2号機

今日までの歩み


1990年代~2000年代 220 MW 級原子炉の標準化と確立化


RAPP 3·4号機


KAIGA 3·4号機


NAPS 1 · 2号機

KAPS 1 · 2号機

KGS 1 · 2号機

RAPP 5 · 6号機

今日までの歩み

規模の拡大と連続製造

1000MW 軽水炉(LWR)KKNPP 1 · 2号機

540 MWe TAPS 3 · 4号機

700 MWe KAPP 3 · 4号機、 RAPP 7 · 8号機

急速な成長に伴う 追加建設

試運転中、建設中、建設着手中の原子炉

建設中

KAPP 3&4 :2x700 MW PHWR

RAPP 7&8:2x700 MW PHWR

6700 MW

建設着手中

GHAVP1&2: 2x700 MW PHWR

試運転中

PFBR: 1x500 MW (BHAVINI)

建設着手中

KKNPP 3&4: 2x1000 MW LWR

計画中の原子炉

国産PHWR

2x700 MW, Chutaka, MP

4x700 MW, Mahi-Banswara, Raj

2x700 MW, Kaiga, Karnataka

2x700 MW, GHAVP, Haryana

高速増殖炉

2x500 MW by Bhavini

政府間協定による 1000MW級軽水炉

2 Units Kudankulam-5&6, Tamil Nadu

6 Units Jaitapur, Maharashtra

6 Units Kovvada, Andra Pradesh

6 Units Chhaya-Mithi Virdi, Gujarat.

6 Units Haripur, West Bengal

インドの工業生産能力の確立

インドの工業は、 さまざまな原子力機器 に対する重要な要件を 満たす総合的な能力の 開発に成功

建設方法論の進化

オープントップ建設 メガパッケージ 建設と試運転の並行

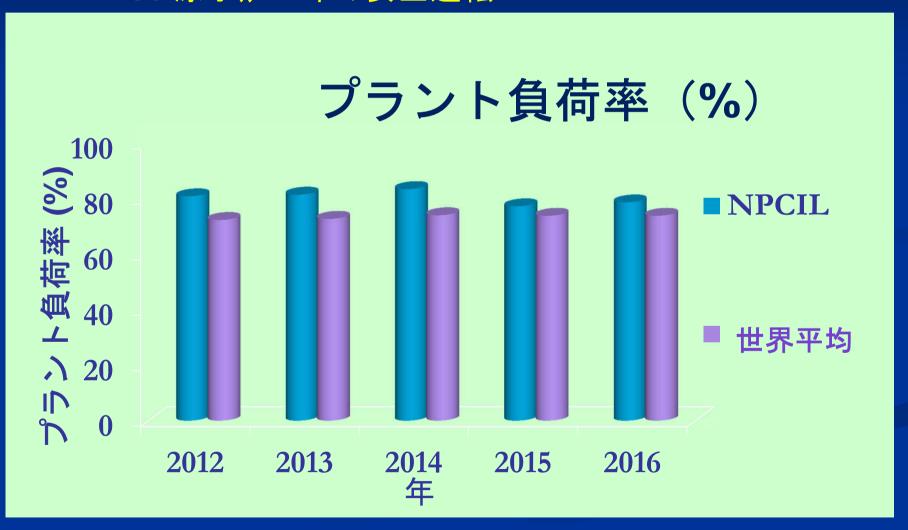
今日のインド原子力産業

■主要な設備製造業者 ポンプ、バルブ、モーター タービン発電機 変圧器および開閉装置 計裝制御系 熱交換器

今日のインド原子力産業

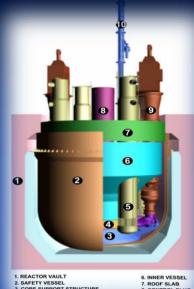
- ■エンジニアリング コンサルタント
 - 土木 計装制御 従来型システム
- ■メガパッケージ、EPC事業者
- ■原子炉機器製造業者

原子炉容器 反応度制御 燃料交換機 蒸気発生器


運転実績

NPCILの原子炉で記録された継続運転(1年以上) (記録回数:21回)

運転実績


寿命延長と安全性向上対策を実施済み456原子炉・年の安全運転

第二段階の 開始

500 MWe 級高速増殖炉 試運転中

3. CORE SUPPORT STRUCTURE

GRID PLATE

8. CONTROL PLUG 9. PRIMARY PUMP

NTERMEDIATE HEAT EXCHANGER 10.

DEDD DEACTOR ASSEMBLY

臨界到達: 2017年

日印原子力協定調印 2016年11月

日印協力の可能性

- ■日本は主な一次系および二次系機器の鍛造品 の主要供給国
- AP 1000 や EPR 用の大型鍛造品も日本から 調達
- 東芝をオーナーとするウェスチングハウス社 AP 1000 の導入が容易に
- ■技術協力を通じてインド産業界にメリットが 期待できる

クリーン&グリーンな原子力発電

