

Nuclear energy & its role in Europe's future energy mix

Yves Desbazeille FORATOM Director General

Tokyo, 09.04.2019

ABOUT FORATOM

FORATOM acts as the voice of the European nuclear industry in energy policy discussions with EU Institutions & other key stakeholders.

Membership

• • •

The membership of **FORATOM** is made up of 15 national nuclear associations representing more than 3,000 companies.

CEZ (Czech Republic) and PGE EJ 1 (Poland) are Corporate Members

Key topics

• • •

EU Energy Policy:

- Economics of nuclear
- EU energy mix
- Environment
- Euratom Treaty
- Security of energy supply
- Special projects Brexit

Nuclear technology:

- Nuclear safety
- Nuclear transport
- R&D
- Supply chain
- · Waste disposal

Communication:

- Nuclear advocacy
- Perception of nuclear energy
- Promotion of nuclear energy
- Public opinion
- Young generations in nuclear

Nuclear energy's contribution to Europe's economy

• • •

126

NUCLEAR REACTORS

70

€ BILLION/YEAR

JOBS

800,000

26%

ELECTRICITY PRODUCTION

ROLE FOR NUCLEAR IN FIGHTING CLIMATE CHANGE

What the World has to achieve to save the climate...

• • •

Global electricity production and technology shares in the IEA 2DS

- A complete reconfiguration of the electricity generation system is needed by 2050.
- Rise of nuclear is accompanied by a *complete phase-out* of coal and oil, a drastic decrease of gas, development of CCS and a massive increase of renewable energies.
- Colossal investments for the energy sector: 40 trillion USD + 35 trillion USD in energy efficiency.

Paris Agreement

• • •

196 states adopted in 2015 the **Paris Agreement** and made a commitment to the common objective of limiting greenhouse gas emissions.

The agreement provides for keeping the increase in global average temperatures well **below 2°C**, and continuing efforts to limit the temperature rise to **1.5°C**.

CO2 emissions by selected EU Member States

• • •

NUCLEAR IN THE EU - CURRENT STATUS & PERSPECTIVES

Nuclear energy in the EU

New build in the EU – construction & plans

• • •

- nuclear power plants under construction

- nuclear projects being developed or planned

FTI CL Study (commissioned by FORATOM)

• • •

Pathways to 2050: role of nuclear in a low-carbon Europe

Final report

www.foratom.org | foratom@foratom.org

FORATOM

The main assumptions of the study

3 nuclear scenarios

• • •

3 nuclear scenarios:

- **1.** <u>High</u> 150 GW, share ~25% (maintaining the current share)
- 2. <u>Medium</u> 103 GW, share ~15% (in line with the EC strategy)
- 3. Low 36 GW, share ~4%

The study assesses the impact of each scenario on the key dimensions of Europe's energy policy:

- 1. security of supply
- 2. sustainability
- 3. economics

Key conclusions

• • •

Need for additional capacity

The high nuclear scenario provides significant "net" installed capacity savings:

+114 GW nuclear capacity
 against:

- +95 GW storage
- +415 GW vRES
- +25 GW thermal

Key conclusions - Security of energy supply

• • •

By 2035, the lack of commercial maturity of storage technologies implies the need for dispatchable sources

 Anticipated nuclear closure (low-nuclear scenario) would lead to 20 GW/7 GW of new thermal/extension which would become lock-in in the LT

With increasing vRES, the EU power system will face a growing need for flexibility both in ST (balancing) & LT (weekly/seasonal)

- Nuclear can already provide flexibility (e.g. France) & this capability can increase over the time
- In the low-nuclear scenario, significant additional yet-to-beproven flexible storage capacity would be needed to ensure security of energy supply (40 GW Battery & 61 GW PT-X)

Energy dependency on imports

 Anticipated nuclear closures (low-nuclear scenario) would increase fossil fuel consumption by 6500 TWh increasing EU dependency equivalent to +36% gas / +18% coal for power consumption over 2020-2050.

Fossil fuel consumption difference from the power sector

Key conclusions - Climate & Sustainability

• • •

2050 climate objectives

• Whilst all scenarios meet the 2050 objective, the **probability to reach it is higher** in the high-nuclear scenario with less cliff-edge effects.

In terms of environmental impact, the high-nuclear scenario means

- •Decreased CO₂ emissions by 2270 Mt or c. 17% of CO₂ emissions over 2020-50 (especially in ST/MT)
- •Decreased air/water pollution by c. 14%
- Decreased land use by c 15,800 km² (~1/2 Belgium)
- Decreased curtailment (+66 TWh)

Nuclear is the only large-scale technology that takes full responsibility for all of its waste & fully integrates these costs.

- •The amount of waste generated by nuclear power is very small compared to other energy sources.
- •The quantity of raw materials by unit of energy is up to x20 smaller than for solar power.

The long lifespan of reactors

 Reactors (60y+ - Gen III) provide high residual asset value after 20y – not tackled by LCOEs – making nuclear a highly sustainable infrastructure

CO2 emissions outlook from the power sector

Land required by different energy sources to match the amount of electricity produced by a 1,800 MW nuclear power plant

Key conclusions - Affordability & Competitiveness

• • •

Consumers will benefit from the future cost reductions of different technologies, incl. nuclear (learning by doing & innovation):

 Nuclear CAPEX can decrease by 37% over 2020- 2050, leveraging technological improvements, further cost reduction for wind onshore (31%), offshore (50%), solar (59%) over 2020-2050

Customers costs

 Further nuclear development (high-nuclear scenario) would mitigate the impact of low-carbon transition on customer cost by €350bn via lower total generation costs (up to €20/MWh in 2030)

Power price difference outlook across scenarios (real 2017)

Sourc: FTI-CL Energy modelling

25

Network & balancing

A high-nuclear scenario would mitigate network (c. €160bn) & balancing cost (c. €13bn)

PUBLICATION OF THE STRATEGY – 28 NOV 2018

Nuclear energy in the EC strategy (Nov 2018)

• • •

EC Communication*:

"Renewables together with nuclear energy will be the backbone of a carbon-free European power system"

EC in-depth analysis**:

- Nuclear will remain an important component in the EU 2050 energy mix
- Capacity of nuclear in 2050 between 99-121 GW
- Share of nuclear in the electricity mix in 2050 ca. 15%
- The consumption of **natural gas** is expected to be severely reduced by 2050 in all scenarios
- In the Baseline, **hydrogen** use develops only as a niche application for road transport and industry

Strategy refers directly to the study commissioned by FORATOM

* https://ec.europa.eu/clima/sites/clima/files/docs/pages/com_2018_733_en.pdf ** https://ec.europa.eu/clima/sites/clima/files/docs/pages/com_2018_733_analysis_in_support_en_0.pdf

Analysed scenarios

Long Term Strategy Options

	Electrification (ELEC)	Hydrogen (H2)	Power-to-X (P2X)	Energy Efficiency (EE)	Circular Economy (CIRC)	Combination (COMBO)	1.5°C Technical (1.5TECH)	1.5°C Sustainable Lifestyles (1.5LIFE)
Main Drivers	Electrification in all sectors	Hydrogen in industry, transport and buildings	E-fuels in industry, transport and buildings	Pursuing deep energy efficiency in all sectors	Increased resource and material efficiency	Cost-efficient combination of options from 2°C scenarios	Based on COMBO with more BECCS, CCS	Based on COMBO and CIRC with lifestyle changes
GHG target in 2050	-80% GHG (excluding sinks) ["well below 2°C" ambition]					-90% GHG (incl. sinks)	-100% GHG (incl. sinks) ["1.5°C" ambition]	

Power sector

Power is nearly decarbonised by 2050. Strong penetration of RES facilitated by system optimization

(demand-side response, storage, interconnections, role of prosumers). Nuclear still plays a role in the power sector and CCS deployment faces limitations.

Industry	Electrification of processes	Use of H2 in targeted applications	Use of e-gas in targeted applications	demand via Energy Efficiency	rates, material substitution, circular measures	Combination of most Cost- efficient options from "well below 2°C" scenarios with targeted application (excluding CIRC)	COMBO but stronger	but stronger
Buildings	Increased deployment of heat pumps	Deployment of H2 for heating	Deployment of e-gas for heating	Increased renovation rates and depth	Sustainable buildings			CIRC+COMBO but stronger
Transport sector	Faster electrification for all transport modes	H2 deployment for HDVs and some for LDVs	E-fuels deployment for all modes	 Increased modal shift Electrification as in ELEC 	Mobility as a service			 CIRC+COMBO but stronger Alternatives to air travel
Other Drivers		H2 in gas distribution grid	E-gas in gas distribution grid				Limited enhancement natural sink	 Dietary changes Enhancement natural sink

CONCLUSIONS

Future of nuclear in EU

•••

Aggregated new nuclear capacity needed

FORATOM 2050 Scenario*

EU Strategy - "nuclear capacity only slightly lower than the current level"

*Scenario based on FTI-CL Energy Consulting study "Pathways to 2050: role of nuclear in a low-carbon Europe" (commissioned by FORATOM)

What has to be done?

AT EU LEVEL:

- Nuclear to be part of the conversation on all policies dealing with climate change
- ✓ Nuclear industry policy
- ✓ Address market failures
- ✓ Increase R&D budgets

AT INDUSTRY LEVEL:

- Improve competitiveness
- Work on standardization / harmonization
- Modernize the sector
- Develop projects / programmes
- Improve attractiveness for young talents

Thank you

• • •

Your voice in Europe

Join FORATOM & let's work together for a

SUSTAINABLE, RELIABLE & INNOVATIVE **FUTURE!**

For more information, please contact:

membership@foratom.org

www.foratom.org | foratom@foratom.org |