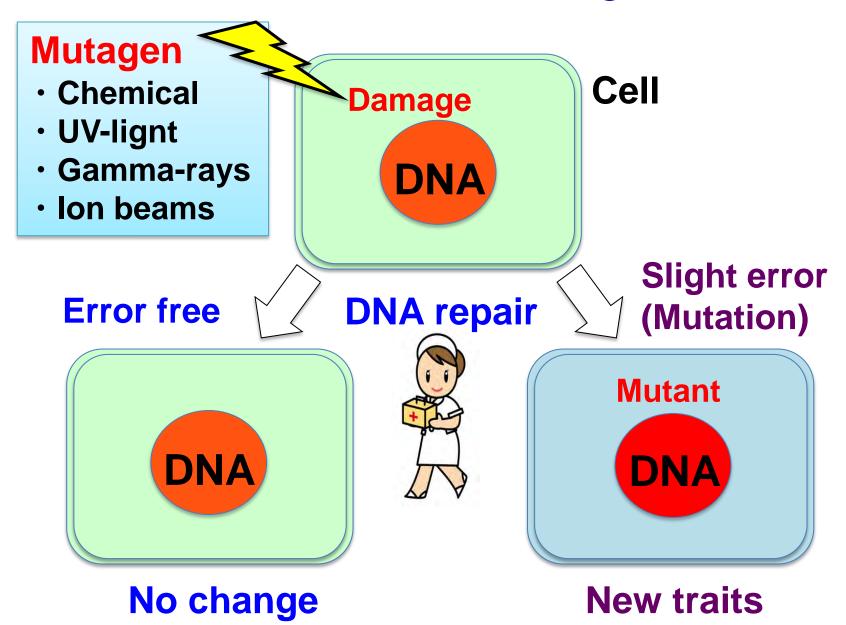


Radiation Processing in Agriculture:

Mutation Breeding, Food Irradiation, and Phytosanitary Irradiation

KOBAYASHI Yasuhiko


kobayashi.yasuhiko@qst.go.jp

Department of Radiation-Applied Biology Research, QST-Takasaki

Mutation Breeding

Discovery of Artificial Mutation Induction

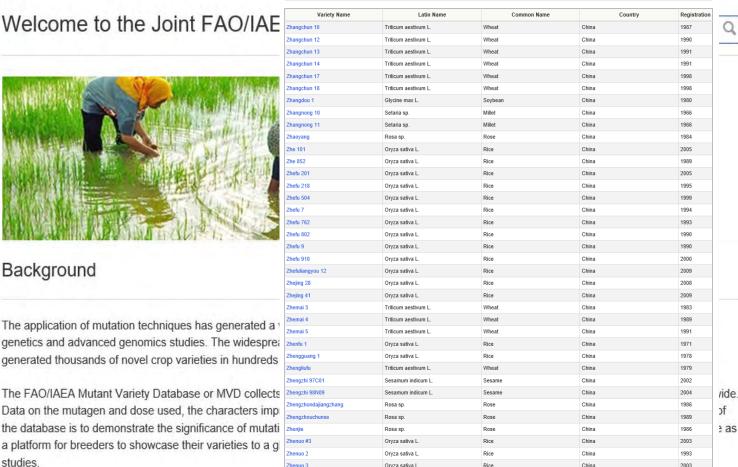
1928

Dr. Lewis J. Stadler

Total number of head progenies examined Mutation differs among tillers

X-ray treated: Higher voltage Heavy dose Light dose	210 259	6
Lower voltage: Heavy dose Light dose	Mutation rate ⁴ / ₂ increased	
Total X-rayed	1,243	14
Radium treated:		
Total for all doses	1,039	3
Untreated	1,341	0
~.	(0.40)	10= (10=0)

Mutant Variety Database

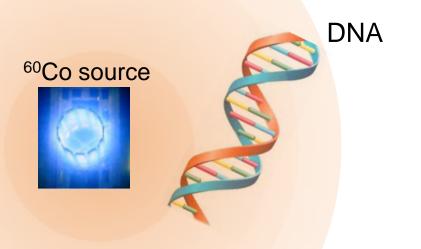

Walp.

Glycine max L

DT2010

studies.

3,283 mutant varieties have been registered!!


HENUO 36

Oryza sativa L

Energy Deposition: Gamma-ray vs Ion Beam

Gamma-rays (electromagnetic wave)

Ion Beams (energetic particles)

Accelerator

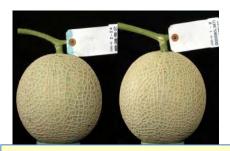
Produce ionization sparsely (Low-LET radiation)

LET: ~0.2 keV/mm

Produce dense ionization along the track of ion particles (High-LET radiation)

LET: 1 ~ 2,000 keV/mm

Mutant Varieties Developed using TIARA



Carnation 8 varieties 2002~2014

Melon (Low-temp. tolerant) 2011

Osteospermum 2 varieties 2007~

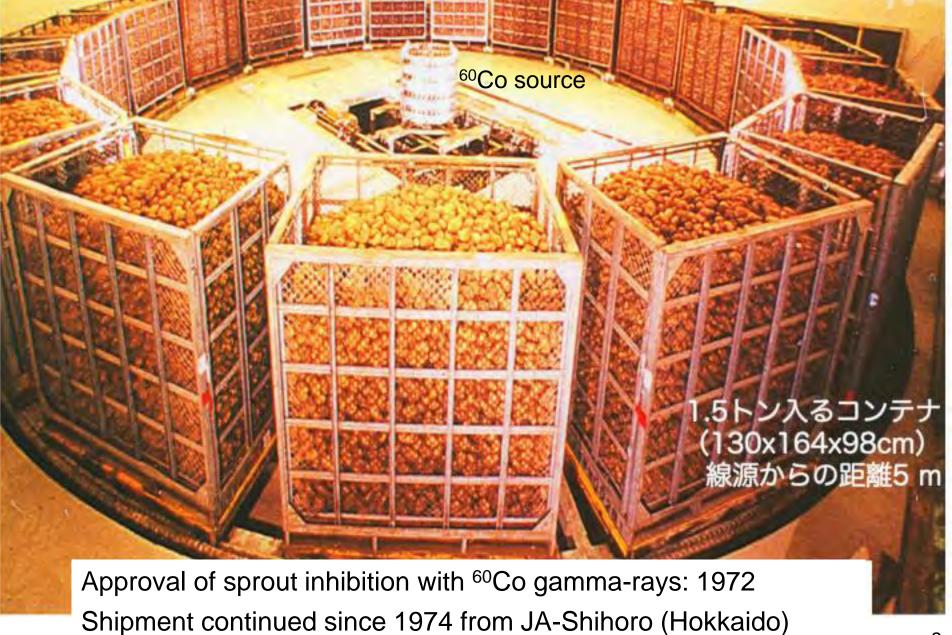
Creeping fig (NOx absorption) 2007

Low-Cadmium rice 2012

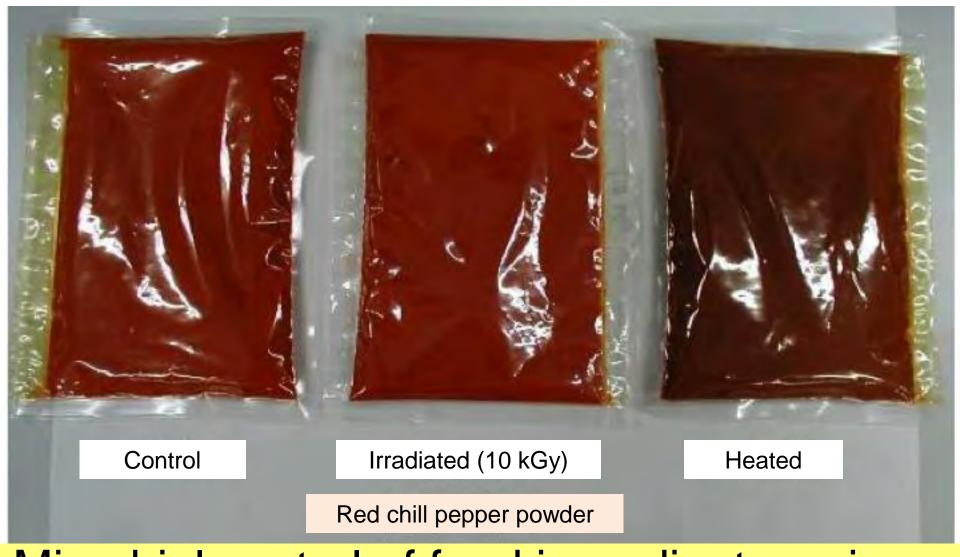
Victory bouquet
GP of Figure Skating
Final 2017

Food Irradiation

Non-heating, non-chemical processing


Why Irradiate Food?

- Delay of Sprouting/Rooting
- Control of Insects
- Prevention of Foodborne Illness
- Sterilization


How Is Food Irradiated?

- Gamma rays from ⁶⁰Co or ¹³⁷Cs
- Electron beam (accelerated electrons)
- X-rays (Bremsstrahlung)

Stable supply of potatoes in off season

Difference of colors between irradiated red pepper powder and those sterilized by heat

Microbial control of food ingredients, spices, herbs and dehydrated vegetables

Reduction of post-harvest losses

Irradiated (2.8 kGy)

Control

Strawberries wrapped by cellophane were irradiated by gamma ray from Co-60 and had been kept at 4 deg-C for 5 days, then at room temperature for 2 days.

Irradiated ground beef burgers (frozen)

Eliminate organisms that cause foodborne illness, such as Salmonella and *E. coli*

China – Spicy pickled chicken feet / wings

中国の味付き鶏脚/手羽先

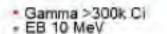
Courtesy of Mr. Henon

Popular snack found in convenience stores across China.

中国全土のコンビニで見かけるポピュラーなスナック

 Irradiation allows minimum boiling for better texture 照射することで茹で時間を最小限にでき、テクスチャー良好

- Shelf-life at room temperature > 6 months 室温での日持ち6ヶ月以上
- > 350,000 tons irradiated in 2017 2017年の処理量は35万トン以上
- Two major manufacturers have own irradiator
 2つの主要生産施設は自社で照射設備を保有


Country irradiating food the most

Courtesy of Mr. Henon

最も食品照射の処理量が多い国、中国

China

- > 1 million tons of food irradiated yearly*
- In ~100 irradiation facilities, increasingly by accelerated electrons
 - ・全照射処理量の70%が食品
 - ・年間100万トンを超える食品を照射
 - 約100の照射施設で処理、 電子線処理が増加中

Phytosanitary irradiation 植物検疫のための照射

Courtesy of Mr. Henon

■ Damage caused by invasive insects: 70 billion USD per year 侵入害虫による被害:年間700億米ドルと推定

■ International trade, tourism + Global warming = spread of insect invaders 国際貿易、観光旅行+地球温暖化=侵入害虫の拡散

Irradiation now recognized as an effective phytosanitary treatment by the International Commission on Plant Protection (IPPC)

現在、照射処理は効果的な植物検疫処理として 国際植物防疫条約(IPPC)で認められている

International standards: ISPM 18 and ISPM 28


国際基準:

(照射の一般指針) 植物検疫措置としての放射線照射のための指針 (ISPM No.18) (具体的な処理基準) 規制有害動植物のための植物検疫処理 (ISPM #28)

Phytosanitary treatment:

Irradiation as a quarantine measure decreases the need for other pest-control practices that may harm the fruit

Blueberries and Raspberries should be approved later this year

Export of irradiated produce from Australia

オーストラリアからの照射農産物の輸出

2017	7-18 (estimate Feb 2018)		2016-17
Product	Exported to	Tons	Tons
Table Grapes	Viet Nam	1 780	1109
Mangoes	New Zealand	1 290	982
Cherries	Viet Nam	370	0
Tomatoes	New Zealand	220	134
Lychees	New Zealand	200	72
Mangoes	USA	100	141
Papaya	New Zealand	22	0
Mangoes	Malaysia	14	0
Lychees	USA	12	6
Capsicums	New Zealand	9	0
Mandarins	Viet Nam	6	161
Strawberries	Indonesia	2	0
Blueberries	Indonesia	1	0
TOTAL		4 027	2 723
		4	J

+50%

Summary

- The ionizing radiation has been utilized as a tool of cultivar improvement, sprouting/rooting inhibition.
- Most irradiated products are spices, herbs and dehydrated vegetables.
- Also successful in niche applications such as frozen legs and pickled chicken snack.
- Use of irradiation as a quarantine treatment shows rapid rise in recent years.