S+3Eを実現するエネルギーミックスへの挑戦 Challenges of Energy Mix to Achieve S+3Es

山地憲治 Kenji YAMAJI

(公財)地球環境産業技術研究機構(RITE)

Research Institute of Innovative Technology for the Earth

第46回原産年次大会 46th JAIF Annual Conference 2013年4月24日、ニッショーホール、東京 @Nissho Hall, Tokyo April 24, 2013

Fundamental Objectives of Energy Policy in Japan

Damaged Items by Fukushima Disaster; (Targets in 2010 Strategic Energy Plan)

+S
Safety (Trust?)

risk of low level radiation exposure (scientific uncertainty)
risk of Severe Accident (low probability, but high
consequence)
risk of climate change (scientific uncertainty, skepticism)

Power Generation Mix in 2030

Targets in current strategic energy plan

Renewables: 20%

Nuclear: 50% — → Impossible after Fukushima

Fossil-fired: 30% 0, 15, 20-25%? depending on the recovery of public trust

on nuclear safety

How to fill the gap of reduced nuclear power? (Both in kW and kWh balance)

- 1. Further energy savings: ambitious targets are incorporated in current strategic energy plan

 → behavioral change using ICT as well as efficiency improvements
- 2. More renewables: PV 53GW and wind power 10GW in current strategic energy plan → power system stability issue → smart grid?; more geothermal, more small hydro, more biomass by FIT policy
- **3.Clean use of fossil fuels:** notably natural gas, clean coal incl. **CCS**, international deployments of Japanese efficient technologies
- **4. Power System Restructuring:** trans-boundary power plants mobilization → wide area grid management; mobilization of demand-side resources: cogeneration, distributed resources, ***

Impact Scenario of Zero Nuclear Policy

Integration of Energy Network across Energy Carriers

+ Mobilization of Demand-side

+EV/ PHEV and Heat Pump

Energy-Information Integration + Smart Community

Reconstruction of Energy Policy as well as Climate Response Strategy

- Keep Nuclear Option: enhanced safety measures, risk communication of low level radiation exposure and severe accident
- Further Energy Saving: behavior change using ICT as well as further energy efficiency improvements • •
- Maximum Introduction of New Renewables: FIT, using the opportunities of restoration (biomass in debris, damaged land • •), smart grid to maintain power stability • •
- •Clean Use of Fossil Fuels: natural gas, clean coal (A-USC, IGCC, CCS), carbon free H₂(brown coal + CCS), bilateral offset credits•••
- •Resilience of Energy System: strengthened power grid, gas pipeline, and liquid fuel supply chain, decentralized energy system with ICT to secure local energy supply in emergency

Common Key Direction: Mobilization of Demand-side Resources 7

Research Institute of Innovative Technology for the Earth(RITE)