Europe and Nuclear: Challenges Ahead

Jean-Pol PONCELET Director General, FORATOM

JAPAN ATOMIC INDUSTRIAL FORUM, INC The 47th JAIF ANNUAL CONFERENCE April 15-16, 2014

Europe and Nuclear: Challenges Ahead

• Who Are We?

Member Fora

Belgium Nuclear Forum info@nuclearforum.be www.nuclearforum.be/

Bulgarian Atomic Forum info@bulatom-bg.org www.bulatom-bg.org

Dutch Atomic Forum info@nrg.eu http://www.nrg.eu (c/o)

Finnish Energy Industries info@energia.fi www.energia.fi

French Atomic Forum forum.atomique.francais@sfen.fr www.sfen.org/

German Atomic Forum info@kernenergie.de www.kernenergie.de

Hungarian Nuclear Forum atomforum@atomforum.hu www.atomforum.hu

16+ Associations 800+ Companies 900,000 Jobs 70 x 10⁹ €/y

[source: FORATOM, PwC]

www.niauk.org/

Slovak Nuclear Forum sjforum@sjforum.sk www.sjforum.sk/

Slovenian Nuclear Forum info@gen-energija.si www.gen-energija.si

panish Nuclear Industry Forum correo@foronuclear.org

Swedish Atomic Forum

Swiss Nuclear Forum info@nuklearforum.ch www.nuklearforum.ch

Ukrainian Nuclear Forum Association atomforum@atomforum.org.ua www.atomforum.org.ua

European Nuclear at the Top

Europe and Nuclear: Challenges Ahead

• Who Are We?

• EU: No Single Energy Policy

A Vision: EURATOM

There is no doubt indeed that nuclear energy is one of tomorrow's energy solutions, and if we don't argue that it will be the very final one, it is simply because we must anticipate

the role of solar energy, so plentiful, of such a high quality, the

technical implementation of which having barely started.

Louis Armand, Euratom and Europe's Energy Issues (1958)

Electricity Mix and GHG

Market Structure & Organisation

10 CEOs: "Rebuild Europe's Energy Policy" Magritte Club, Brussels, October 2013

FAILURE of competitiveness: energy bills up +17-21 % in 4 years
FAILURE of security of supply: 51 GW capacity mothballed (= B, CZ, P)
FAILURE of climate change: CO₂ emissions +2,4 % (2011-2012)

put EU Policy back on track by:

fostering the integration of mature renewables into the regular market

giving priority to the utilization of existing competitive power capacity rather than subsidizing new constructions

strenghtening fundamentally the European carbon market

Europe and Nuclear: Challenges Ahead

- Who Are We?
- EU: No Single Energy Policy
- EU's 2050 Roadmap and Challenges

EU's 2050 Energy Roadmap

COM(2011) 885 final, 15/12/2011

- 80-95 % economy-wide GHG emission reduction by 2050 (*vs.* 1990)
- structural changes ahead: increased reliance on electricity, renewables, gas, nuclear ("a key source of low carbon electricity generation"); investments, costs; market structure
- **nuclear** ranges from 2.5% ("Low Nuclear") to 19% ("Delayed CCS")
- the low end:

units phased out at the end of their lifetime no replacement completing 4 units under construction (FI, FR, SK)

• the high end:

about 140 GWe of nuclear capacity (100 new units) by 2050

High Nuclear in 2050 and the global economy

time period	activities	investment (G€/a)	jobs
2012-2020	safety upgrades LTO (first step)	10.0	10,000
2015-2035	LTO	4.5	50,000
2025-2045	New Build	25.0	250,000
2012-2050	decommissioning	3.0	20,000
2012-2030	fuel/waste management	5.0	10,000

[internal analysis - 20% nuclear power share]

EU's 2050: How to Get There?

- public understanding / acceptance / support safety, waste disposal, proliferation: "can nuclear survive democracy?"
- which regulation: national, EU-wide? towards more harmonization, peer reviews; how to keep consistency, effectiveness?

• how (and who) to finance?

support mechanisms to long-term investments (feed-in tariffs, contract for difference, "Mankala" model, long-term supply contracts, etc.) *vs.* EU's single market competition rules

• which foreign dependence?

the Russian case: uranium, fuel, technology

The Public: How Safe is Safe Enough?

• before March 2011:

56 % of EU citizens wanting nuclear energy to be maintained or increased [Eurobarometer on Nuclear Safety, April 2010]

 in the UK, the Netherlands, Spain, Switzerland and France, after a dip just after the accident, public acceptance of nuclear has recovered

EU: Nuclear Safety Directive

- **Council Directive** (25 June 2009): a Community Framework for the nuclear safety of nuclear installations [2009/71/EURATOM]
- 13 June 2013: EC's proposal for a revised Directive (post-Fukushima)
- 17 October 2013: final proposal, EP and Council to decide
- June 2014 (?): European Council to conclude
- some issues of concern: too early? / too many detailed prescriptions / peer reviews are powerful and should be kept, but... kept under control to provide added-value
- at the end, *who's ruling?*

EU: the Back End

COUNCIL DIRECTIVE 2011/70/EURATOM

of 19 July 2011

establishing a Community framework for the responsible and safe management of spent fuel and radioactive waste

Member States' responsibility: "MS shall establish and maintain a national legislative, regulatory and organisational framework"

"MS shall ensure that ... "

- regulatory authority
- financial resources
- transparency
- reporting: Aug 23, 2015 for the first time, thereafter every 3 years

"It is broadly accepted, at the technical level that, at this time, **deep geological disposal represents the safest and most suitable option** as the end point of the management of high-level waste and spent fuel considered **as Waste**." Directive 2011/70/EURATOM, (in the whereas...23rd)

EU: Ruling Third Party Liability?

- severe accident (INES 6-7): never a single example in the EU
- **Paris (1960) and Vienna (1963) Conventions:** all of the EU MS operating NPPs adhere to either the one or the other

ensuring that victims can claim and obtain compensation ensuring that nuclear energy can continue to be used, defining a minimum limit of operator's liability

• *strict liability:* not to prove fault or negligence

channelled liability: exclusively the operator's *limited liability*: in time and in amount, backed by insurance or financial security ensuring the full amounts are available

• = a sound set of principles:

robust regulatory regime, continuous improvement by operators availability of adequate compensation for victims firm foundation for investments, strong contribution to security of supply

UK Nuclear Case: Hinkley Point C

Hinkley Point C: Number power

https://www.gov.uk/government/news/hinkley-point-c

Uranium Requirements: EU vs. the World

FORATIOM

EU: Enrichment Capacity

Enrichment Capacity +				
Development Plans (kSW)				
operator	end 2011	max. target [1]	share, %	
AREVA (F)	12050	8200		
URENCO (D, UK, NL)	14200	15700		
Europe	26250	23900	27	
AREVA (USA)	0	3300		
URENCO (USA)	400	5700		
USEC	6000	3800		
USA	6400	12800	15	
CNCC	2250	8000		
GLE	0	3000		
TVEL/TENEX	27600	37100		
others	76	2250		
World	62576	87050	100	

[1] up to 2022

[source: WNA]

EU: Fuel Fabrication

LWR fuel fabrication capacity, tHM/y							
country	fabricant	conversi	on	pelletizir	ng	rod/assem	nbly
France	AREVA	1800		1400		1400	
Germany	AREVA	800		650		650	
Spain	ENUSA	0		500		500	
Sweden	Westinghouse AB	600		600		600	
UK	Westinghouse [1]	950		600		860	
Europe		4150	30	3750	26	4010	31
USA	AREVA Inc	1200		1200		1200	
USA	GNF	1200		1000		1000	
USA	Westinghouse	1500		1500		1500	
USA		3900	28	3700	26	3700	29
World		13708	100	14418	100	12772	100

[1] incl. 200 tHM for AGR reactors

[source: WNA]

Origin of EU-delivered Uranium, %

EU vs. Russian Technology

Russian	-made Reactor	s in Europe	
country	site	type	(MWe)
Bulgaria	Kozloduy-5	VVER V-320	953
	Kozloduy-6		953
Czech Republic	Dukovany-1	VVER V-213	468
	Dukovany-2		471
	Dukovany-3		468
	Dukovany-4		471
	Temelin-1	VVER V-320	1003
	Temelin-2		1003
Finland	Loviisa-1	VVER V-213	496
	Loviisa-2		496
	Pyhäjoki	VVER-1200	1200
Hungary	Paks-1	VVER V-213	470
	Paks-2		473
	Paks-3		473
	Paks-4		473
Slovakia	Bohunice-3	VVER V-213	472
	Bohunice-4		471
	Mohovce-1		436
	Mohovce-2		436
	Mohovce-3		440
	Mohovce-4		440
total			12566

source: PRIS data base (IAEA)

Europe and Nuclear: Challenges Ahead

- Who Are We?
- EU: No Single Energy Policy
- EU's 2050 Roadmap and Challenges
- A German way?

Energiewende

Die Energiewende wird teurer Ökoumlage steigt auf 6,3 Cent. Dabei bleibt es nicht. Gewerkschaft warnt vor sozialer Unwucht

SPIEGEL

Home > Wirtschaft > Wirtschaftspolitik

EEG-Umlage

Erdogan attackiert die UN

Ökostrom kostet jeden Deutschen 240 Euro im Jahr

09.01.2014 · 2013 erreichte die EEG-Umlage mit 19,4 Milliarden Euro einen Rekordwert. Wirtschaftsminister Gabriel wirbt in Brüssel für eine weitere Begünstigung der deutschen Industrie - sonst drohe der Bundesrepublik die Deindustrialisierung.

Von ANDREAS MIHM und HENDRIK KAFSACK, BERLIN/BRÜSSEL

Keitersagen 🗧	Empfehlen (43)		
Merken	🗐 Drucken		
f 🔽 💱			

Anze

Germany: Energiewende priorities

- *ideological:* phasing out nuclear
- **commercial:** reducing energy imports + lowering the country foreign dependency
- industrial: developing new technologies re-industrialization jobs creation
- *environmental:* reducing greenhouse gas emissions
- *geopolitical:* Germany as a world model, exporting its successes

source: the German Vice-Chancellor, Berlin Energy Forum, 10 February 2014

electricity surcharge: 52.8 €/MWh (2013), 62.4 €/MWh (2014) total costs: 13.2 G€ (2011), 23.6 G€ (2014) GHG emissions: +1.2 % (2011-2012)

Germany: Electricity Production

Electricity production by energy source (relative), 2011-2013

Germany: "Availability" of Energy Sources

Equivalent Full Power Use by Energy Source (hours/day), 2011-2013

Europe and Nuclear: Challenges Ahead

- Who Are We?
- EU: No Single Energy Policy
- EU's 2050 Roadmap and Challenges
- A German way?
- Science, R&D, Technology

European Science at the Top

1911

1 PS

It all started with Physics...

SOLVAY International Conferences, Brussels, Belgium

32

European Science at the Top

...went on with Physics and Technology...

The Nobel Prize in Physics 2013 François Englert, Peter Higgs

European R&D at the Top

...flew to space...

Cassini-Huyghens

(NASA/ESA/ASI) Pu²³⁸-powered to Titan, Saturn's largest moon

European R&D at the Top

...now supports diagnosis and therapy...

^{99m}Tc

used by 10,000 hospitals 40 M procedures annually

OSIRIS, Saclay (F)

EU: Science, R&D, Technology

...and now?...

- GEN-IV reactors, SMRs, new concepts(modularity)?
- partition of actinides, transmutation at industrial scale?
- nuclear fusion: still a dream for long?
- a leap in renewables (artificial photosynthesis, CO₂ cracking, battery technology, PV material, others)?

FORATOM

www.foratom.org

avenue des Arts 56 B-1000 Bruxelles

